NASA SP-3096

MOLECULAR PHYSICS OF

(NASA-5FE-3C96) MOLECUOLAR PHYSICS OF N76=-22004
"QUILIBFIUM GASES: A HANDECCK FOR ENGINEERS THRU
(Va5 A) HC $9.50 CSCL 204 NT6-22014

Unclas
H1/72 2bZ65

'NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

- s T i




—— ——— T ————— T T ——— ]

NASA SP-3096

MOLECULAR PHYSICS OF

- EQUILIBRIUM GASES

A Handbook for Engineers

By C. Frederick Hansen

Ames Research Center

Scien.ific and Technical Information O ffice 1976
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
||“_:|f!:h'."ff-!,'. D.C




BN

ce .u’»r'r.-hmiw‘ n T

PR

e

'
¥
i

RFPRODUCIBILITY OF THE
URIGINAL PACE IS POOR
PREFACE

Molecular physics is deemed here to include the physics of fundamental
particles such as atoms and electrons as well as of more complex molecular
structures formed from these basic building units. The subject is one of wide
utility and is rich in beauty. Its usefulness appears in every field of engi-
neering and technology concerned with matter, that is, in every physical area
of human endeavor. The conquest of space, the conservation of earth resources,
and the promotion of health and ecology are but a few examples of present
social concerns that ultimately rest on an understanding of molecular science.
To be sure, the direct application may often be more than one link in the
chain removed from the basic science, but the linkage is nevertheless always
there whenever one deals with matter in any form. The bulk properties of
matter which the engineer uses to solve practical problems are all appropriate
averages of basic atomic and molecular properties. To deny the importance of
this linkage is to deny the technology the roots from thich it grows. Obvi-
ously, any society that depends on its technology for leadership in the world
community must promote a healthy competence in such fundamental science if it
is to maintain this leadership.

The beauty of molecular physics is less easy to define than its useful-
ness, but it is unmistakable. To the scientist the logical framework of the
subject is impressive, to the artist and architect the variety of structure
and form evoke admiration, and to the mathematician the elegance of the sym-
metry relations involved holds exceptional appeal. To the mystic, the science
of molecules is a pattern of creation in the physical universe suggesting sim-
ilar patterns of creation on other planes of reality. Moreover, the atomic
and molecular sciences are now reasonably mature and permit one to classify
extensively and make broad generalizations. Philosopher Hans Reichenbach has
said that generalization is the very essence of knowledge, so molecular theory
partakes of this quality of all true knowledge.

The present bock is concerned only with the evaluation of equilibrium
thermodynamic properties of gases and some applications to engineering prob-
lems. This subject has been developed traditionally by the physical chemist,
but the basic theory and experimental data are now so complete that the sub-
ject logically should be taken up by the engineer to work out the detailed
approximations needed for his applications. This book attempts to give the
engineer a background for this task.

To solve gasdynamic problems in general, the engineer also needs a well-
developed science of transport processes, of chemical rate processes, and of
radiation. The first of these is already a standard engineering subject and
is well treated by recent engineering texts such as "Mathematical Theory of
Transport Processes in Gases" by J. H. Ferziger and H. G. Kaper (North
Holland-American Elsevier Publishing Co., 1972) and "Introduction to Physical
Gasdynamics" by W. G. Vincenti and C. H. Kruger (John Wiley & Sons, Inc., 1965).
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The other two topics (chemical rate processes and radiation) are reasonably
well developed from a physicist's or physical chemist's point of view, but are
yet in their infancy so far as engineering applications are concerned. For
example, the theoretical physicist and chemist know the form of the matrix
elements for perturbation-induced transitions between states, but the engineer
or applied scientist has been unable to calculate simple rate coefficients, or
even the perturbation potentials between colliding particles that determine
the rate coeffirients, or simple f-numbers and radiation band strengths. This
occurs because the wave functions for multi-electron atoms and molecules can-
not be calculated with sufficient precision; thus the engineer is forced to
rely on meager and sometimes uncertain experimental data, and shrewd extrapo-
lations of such data, to obtain the reaction rates and band strengths needed.
However, this situation is rapidly changing. Fast, powerful digital computers
are emerging which will soon allow us to calculate sufficiently accurate wave
functions for many purposes. The time is approaching when the experimentalist
will concentrate on highly accurate, unambiguous measurements at a few select
and carefully controlled condition,, which can be used to validate the theo-
retical model programmed on the computer, whereas in the past the experi-
menters have attempted to make measurements over as wide a range of conditions
as possible to provide the engineering data needed. Computer solutions will
still make use of approximations because the speed and memory size needed to
do so-called "exact" solutions are still about two orders of magnitude beyond
present capability despite the tremendous recent advances in computer tech-
nology. Thus, the experimenter will retain a key role in validating these
programs, even though the computer will be used tc do extrapolations to condi-
tions of interest. Such computer usage will open up the fields of reaction
chemistry and radiation to full and practical quantitative applications by the
engineers. Although this book does not include these subjects, the present
material on equilibrium states and properties of gases is necessary background
for the engineer who will pursue and use nonequilibrium properties of gases.

Several additional books have been aimed at a similar audience of aero-
dynamicists and engineers working on systems involving real gas behavior.
Among these are "The Dynamics of Real Gases" by J. F. Clarke and M., McChesney
(Butterworths, 1964), "Atomic Theory of Gas Dynamics" by J. W. Bond, K. M.
Watson, and J. A. Welch (Addison-Wesley, 1965), "Physics of Shock Waves and
High Temperature Hydrodynamic Phenomena' by Y. B. Zel'dovich and Y. P. Raiser
{translated and edited by W. D. Hayes and R. F. Probstein, Academic Press,
1967), as well as the books by Vincenti and Kruger and by Ferziger and Kaper
which were cited above in cornection with the transport properties of gases.
In addition, "The Molecular Theory of Gases and Liquids" by J. 0. Hirschfelder,
C. F. Curtiss and R. B. Bird (John Wiley and Sons, 1954) has been widely used
by engineers and basic scientists alike. The present book puts less emphasis
on gasdynamics than the above texts, but treats the molecular physics and
structure aspects of the problem in greater detail.

Atomic and molecular physics have now become a part of graduate engineer-
ing curriculum, in recognition of the fact that these subjects are included in
the background a research engineer needs to attack his problems. In the nor-
mal course of evolution, the basic scientist formulates and establishes the
fundamental concepts in a field of science, and then tutors the engineer in
the application of these concepts. As the field matures and becomes
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reasonably self-consistent, the basic scientist turns to newer areas of
science, and the engineering field gradually absorbs the established science
into its own curriculum.

In any case, the engineer is best served by ultimately assuming responi-
bility for his own development of the intellectual tools of his profession.
Approaches particularly suited to the engine~r's needs are often not well
suited to the basic scientist's viewpoints and vice versa. For example,
knowledge of atomic and molecular properties is an end in itself to the physi-
cist, but to the engineer these properties may be just a collection of coeffi-
cients needed to predict the behavior of a total system. It is the mark of a
good scientist to refine his theoretical models, and their experimental con-
firmation, until they are as detailed and precise as possible. It is the mark
of a good engineer to use models just sufficiently detailed to achieve the
accuracy required and no more. Thus, it behooves the engineer to approach
atomic and mol=cular processes from this point of view.

In the above spirit, this book deliberately emphasizes analytic models of
the atomic processes, often to the point of considerable oversimplification,
which convey at a glance the dominant functional behavior involved. To para-
phrase an old Chinese proverb, 'One analytic model is worth 10,000 hours on
the computer." Such models help the engineer think effectively about the
total system, and they yield the natural dimensionless parameters with which
to analyze the problem. The engineer often finds that he can make comparisons
with experiment and modify the constants that appear in very simple models to
achieve the accuracy he needs.

Whether simple or not, a mathematical relation cannot really be used
wisely until its derivation has been followed in detail so that its limita-
tions are appreciated. The problem here is that the research engineer is
faced with such a swelling torrent of published results to digest in a wide
variety of fields that he cannot possibly take time to fill in all the deriva-
tions, which are necessarily abbreviated or deleted in the specialist's liter-
ature, even though he may be perfectly capable of doing so. Thus, one of the
purposes of this book is to present derivations in considerable detail so that
the reader can follow them quickly, recognize the potentials and limitations
inherent in the model, and then profitably use his time elsewhere. Although
such derivations are given only for simplified models, they will often be
sufficient to provide a good intuitive grasp of the more detailed models
encountered in the literature.

The reader is presumed to be acquainted with kinetic theory, thermo-
dynamics, and elementary statistical mechanics and quantum mechanics, and to
have a working knowledge of complex variables and the usual differential and
integral calculus, all of which is standard for upper division or graduate
engineers today. Concise derivations of some fundamental relations ir statis-
tical and quantum mechanics are included (although these are not needed by
readers with the background specified above) because it is felt that engineers
whose background in these subjects has lain unused for a time can then use the
book more effectively. In addition, these short derivations are useful
mnemonic aids that organize the essential relations, even for the advanced
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student, and their presentation provides the opportunity to call attention to
viewpoints particularly adapted to an engineering approach.

Consistent with the purpose of making the derivations easy to follow,
there has been an attempt to avoid complicated notation, involving a plethora
of superscripts and subscripts. For example, vector notation is used when it
seems to contribute to the understanding of the relations discussed, but the
vector symbols are merely dropped whenever the issue concerns just the magni-
tudes of the vectors, rather than resorting to the rather cumbersome absolute
magnitude signs about the vector symbols. Such notations do help retain gener-
ality, of course, but they are inimical to rapid comprehension and effective
thinking. On the other hand, notation and dimensions are chosen appropriate
to the topic under discussion, rather than for consistency. The specialist
can afford the luxury of treating problems in a single, consistent set of
units, but the engineer has no choice but to learn to be at ease with any sys-
tem of units if he is to draw on the specialized knowledge in a variety of
fields and bring it to bear on his problems. Equations are transformed to
dimensionless form, where appropriate, because the essential relations can
usually be more readily recognized and brought into focus in this form.

I have often been privileged to function as an interface between the
basic sciences and the engineering approach to research problems. I have
found this to be a stimulating function, for it forces one to attempt to formu-
late the essence of physical phenomena in as simple and direct a way as possi-
ble, yet maintaining an awareness of the limitations in accuracy of the models
used. The material in this book is chosen primarily for its tutorial or heu-
ristic value, so it is in no sense a complete exposition of the myriad of
approximate models of atomic and molecular properties found useful for engi-
neering needs. The primary purpose is to provide the engineer with those
physical concepts about atoms and molecules which will enable him to digest
research literature more efficiently. Hopefully, he will then be in a posi-
tion to bring himself up to date with current archive literature in those
areas pertaining to his particular needs.

The material contained in the book was first presented in a series of
lectures to graduate students in Fluid Mechanics and in Aerodynamics at
Massachusetts Institute of Technology (1965-66) as a course entitled 'Atomic
and Molecular Kinetic Processes.'" I am indebted to Professors R. F. Probstein,
J. A. Fay, and J. C. Keck for the opportunity of preparing and delivering
those lectures. In subsequent years, the material has been expanded and
updated as a set of notes for training seminars attended by research engineers
of the Fluid Mechanics Branch, the Magnetoplasmadynamics Branch, and the Phys-
ical Gasdynamics and Lasers Branch at Ames Research Center of NASA. Recently,
the notes were again revised for use as lecture material for a graduate course
in Aeronautics and Astronautics Engineering at Stanford University (1973-74)
entitled '"Molecular Physics of Gasdynamic Flow.' I am indebted to Professor
Daniel Bershader for this opportunity to update the notes. The students at
M.I.T. and Stanford, research engineers at NASA, and other colleagues in the
aerospace industry have all provided valuable suggestions about their needs in
basic physics of gases, and this book attempts to address some of those needs.
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The labor of preparing this book would increase enormously if I were to
attempt to give full credit to all the sources and people who contributed in
one way or another. My greatest debt is to Dr. Frederick Otto Koenig,
recently Emeritus Professor of chemistry at Stanford University, for the superb
lectures on statistical and quantum mechanics he gave many years ago. I also
want to credit B. E. Cunningham, NASA, for his help in preparing some of the
material in chapter 1. Valuable criticism and editing was provided by my
students and by my colleagues at Ames Research Center - Drs. John R. Viegas,
David M. Cooper, Robert L. McKenzie, and Kenneth K. Yoshikawa. Undoubtedly,
some of my errors remain; I hope these are minor in number and degree.

The references cited merely represent a few that have become classics or
that I have found helpful; they do not in any way constitute a full bibliog-
raphy. However, the material treated is now reasonably stabilized and self-
consistent, so the brevity of the bibliograpliy should not seriously detract
from the tutorial purpose of the book. The aim is not so much 1o make the
material complete, as this would require many additional volumes, but to
present an engineering approach to a subject that has formerly been considered
to be entirely in the domain of basic physics and chemistry and to demonstrate
some of the advantages of such an approack.

C. FREDERICK HANSEN
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CHAPTER 1 - THERMODYNAMICS AND STATISTICAL MECHANICS
1.1 SUMMARY

The basic thermodynamic properties of gases are reviewed and the relations
between them are derived from the first and second laws. The elements of sta-
tistical mechanics are then formulated and the partition function is deriv.d.
The classical form of the partition function is used to obtain thz Maxwell-
Boltzmann distribution of kinetic energies in the gas phase and the equiparti-
tion of energy theorem is given in its most general form. The thermodynamic
properties are all derived as functions of the partition function. Quantum
statistics are reviewed briefly and the differences between the Boltzmann dis-
tribution function for classical particles and the Fermi-Dirac and
Bose-Einstein distributions for quantum particles are discussed.

1.2 INTRODUCTION

Properties of atoms and molecules are normally defined to be intrinsic
for the gaseous state, that is, they are assumed to be properties only of the
particles themselves and independent of the state of the gas. Among such
properties are the quantum numbers of the particle, collision cross sections
for scattering or internal energy excitation, dipole moment, etc. Strictly
speaking, this assumption is valid only for the dilute gases; if the density
of the gas becomes large, the atomic and molecular properties are all affected
by perturbations from neighboring particles. For example, the perturbed quan-
tum state can be described as a lincar combination of unperturbed quantum
states, and all other properties of the particle are affected accordingly.
Nevertheless, a very useful model of the gaseous state is one in which the
bulk properties of the gas are taken to be intrinsic molecular properties
averaged over the Jistribution of particles in the various unperturbed quantum
states. The effects of high density and pressure are then analyzed as small
perturbations to this model.

The engineer is, of course, ultimately interested in the bulk properties
of the gas, which may be classified as either intensive or extensive. An
intensive property is a function of position and does not depend on the spe-
cific amount of gas considered, whereas an extensive property represents an
average per unit quantity of gas which is to be multiplied by the total
quantity of gas to obtain the total value of the property for the system. The
three most commonly used intensive properties are temperature, T; pressure, p;
and density, p.

For the extensive properties, the capital letter notation is tradition-
ally taken to represent the average value per mol of gas (i.e., per Avagadro
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number - 6.025x1023 - of mulecules) whereas lower case letters are used to
represent the value per utit mass. For example, the extensive properties per
mol of interest here are

M molecular weight per mol

V or %! volume per mol

F.5 energy per mole REPRODUCIBHJITY OF THE
ORICINAL PAGE IS POOR

H or E+pV enthalpy per mol

S entropy per mol

Cy or (%% . specific heat per mol at constant volume or censity

Cb or (%% specific heat per mol at constant pressure
p

F or E-TS free energy per mol or Helmholtz free energy

G or H-TS free enthalpy per mol or Gibbs free energy

(Note that A is sometimes used for the Helmholtz free energy, and F for
the Gibbs free energy.)

Fluid dynamicists are usually interested in average properties per unit
mass rather than per mol because, in these units, the thermodynamic quantities
relate most directly to the flow velocity. For example, the sum of the
enthalpy per unit mass and the kinetic energy per unit mass is a constant of
steady adiabatic inviscid fluid flow. The most commonly used bulk properties
per unit mass are:

e =E/M energy per unit mass

h=H/M enthalpy per unit mass

ey = Cy/™M constant volume specific heat per unit mass
2p = Cb/M constant pressure specific heat per unit mass

1.3 REVIEW OF THERMODYNAMIC RELATIONS

A brief review of some of the relations that exist between the thermo-
dynsmic quantities will be helpful (refs. 1-3). These may be derives rrom the
first and second laws of thermodynamics, stated here in different.al form.



ST NG TR

R

ant

s 2R
545, o

L LAs 103
RS

o

© ARy

o esde
7

S D LA Ty

% e
A

IR,

a . -
~ . . : " e
RN ‘ wae. . . ¥ .
e . . el
“ n e agray - mee—— g '“."*/

(AR " T - ) )

First Law of Thermodynamics (Conservation of Energy)

Every system has an energy E such that, for any change in which the
total number of particles is conserved,

dE=dq+dw (1.1)

where dq is defined as the heat absorbed by the system and dw as the work
done on the system. The latter is a purely mechanical quantity, force times
distance, which for a gas phase system is normally just

dw = -p dV (1.2)

Note that dw vanishes for a constant volume process.

Second Law of Thermodynamics (Law of Entropy)

Every system has an entropy S and an absolute temperature T such
that, for any change in which the total quantity of matter is conserved,

dg < T ds {1.3)

The equality sign gives the lower bound on the change of entropy which obtains
when the process is completely reversible.

Consider the heat flux from a system at temperature T, to a system at
temperature T; where T, > T; > 0. The total change in entropy of the two
systems is always positive:

ds=d91+d321dq(511---1—.1-2- >0 (1.4)

The flow of heat from a hotter to a cooler system is a spontaneous, irrevers-
ible process, and the inequality signs in equations (1.3) and (1.4) hold for
such cases. However, in principle, an experiment can be imagined in which

the temperature difference is so minute that the process is almost reversible.
The equality sign in equation (1.4) then gives the lower bound on the entropy
increase. At equilibrium, the processes that occur in a system become com-
pletely reversible by definition, temperature differences must be zero, and
the entropy becomes a maximum subject to the constraints imposed on the system.

The above result for two systems can be generalized to include an arbi-
trary number of systems, indeed the entire universe, and for processes other
than heat flux, such as mass flux, pressure change, energy change, work, etc.
The total change in entropy for any real process is always greater than zero.

For convenience in the derivations to follow, a closed system is defined
as one that allows neither mass addition nor subtraction, but does allow
energy or heat flux to and from the system. Conversely, an open system (a
concept discussed in the chapter on Chemical Equilibrium) allows mass addition
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.l or subtraction also. For the present, we consider relations between the

i properties of a closed gas phase system. For such a system, it follows from
equations (1.1}, (1.2), and (1.3) that

dE +pdV-TdS<0 (1.5)

/ The equality holds if the processes are all reversible, that is, if changes
are made so slowly that the system always maintains equilibrium. In reality,
a system must be driven out of equilibrium to make a process occur and change
the state of the system starting from equilibrium. However, in principle, the
amount of nonequilibrium can be kept so small that the equality is an extremely
good approximation for the process. The equality also holds if the beginning
and end states are in complete equilibrium, whether or not the process is
reversible, since the equilibrium conditions are state functions and do not
depend on the process.
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In practical terms, we speed up desired processes with interactions
between the system of interest and the surroundings external to that system.
Consider the special case where the processes change the state of the system
from one equilibrium state to another. This situation is illustrated in
figure 1.1 which describes two paths a process
may take in going from equilibrium state 4 to
equilibrium state B. Let the ordinates repre-
sent any two independent thermodynamic variables
(such as pressure and temperature, or volume and
temperature, or volume and entropy, etc.'. Any
two such variables uniquely determine the equi-
librium state and thus all other variables. By

A, y) definition, the system at A will remain at that
state indefinitely unless a small amount of non-
THERMODYNAMIC VARIABLE X equilibrium is introduced from an external sys-
tem - for example, the nonequilibrium introduced
Figure 1.1.- Process paths by forcing a gradual change of volume, or by
from equilibrium state 4 slowly letting heat in or out of the system. In
to equilibrium state B. principle, the nonequilibrium could be produced
by a slow change in any other variable, or a com-
bination of variables, caused by interaction with an external system. For a a
change in volume, mechanical work must be done on the system or by the system ‘
to move the gas boundaries against or with the gas pressure, respectively. If
this change in variable were applied infinitely slowly, the system would trace
a path from A4 to B given by the solid curve for which every point on the
curve is essentially a state in equilibrium and for which the prucess would
. stop immediately as soon as the interaction with the external system were
terminated. For this path, the process is reversible and the equality of
equation (1.5) would apply. Since this process would take infinitely long, as
a practical matter the process would be speeded up by forcing it to follow an
irreversible nonequilibrium path, say from 4 to A'. At A' the inequality
of equation (1.5) would hold. Then, if the forcing function from the external
source were removed, the system could change spontancously from the nonequi- ;
librium state A' to an equilibrium state B', at which point the chaage in
the system would stop and the equality of equation (1.5) would hold so far as
the internal system is concerned (i.e., not including changes in the external
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system). State B' might not be exactly the same as state B if the forcing z
function from the external system were not terminated at the appropriate point {
for spontaneous internal processes to lead to B; however, B' will lie some- !
where on the equilibrium line containing 4B (fig. 1.1). The surface formed §
by all such lines in a third dimension, which represents asnother thermodynamic g
variable 2, is called the equilibriwm surface. The system could be forced ‘
back to state B by a further irreversible path if the appropriate inter- %
action with an external system is used. For any irreversible path AA'B, the i
total entropy change of the internal and external systems will be greater than P
zero. Often the engineer is interested only in the balances that pertain to P
the internal system, which are uniquely determined by the starting and end :
points A and B. In other words, the internal system balance will be the same : :
as though the path had been the reversible path, in which case, equation (1.5) - ;
may be used with the equality sign. However, note that somewhere external to i i
the system in which a change of state has taken place, there have been changes 3 3
which when coupled with the changes in the system, increase the total entropy ;
of the system and its surroundings; otherwise the process would not have
occurred in finite time.
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Conservation theorems for nonequilibrium or irreversible processes in
closed systems can also be deduced from relations such as equation (1.5). § i
Consider a system kept at fixed specific volume V and entropy S. These two ! N
independent variables uniquely determine the equilibrium state of the system
and therefore all remaining thermodynamic variables at equilibrium, such as
E, p, T, etc. Now if the internal system undergoes an irreversible process by
interacting with an external system and is then returned to its original equi-
librium state, while V and S are maintained constant throughout, the inte- ;
j gral of all changes dE must sum to zero. This can occur only if dE ) ;
b vanishes over each interval of the cycle. Thus internal energy is a con- i ;
\ served quantity in any intermal process where V and § are fixed; in contrast,
the quantities pressure or temperature might vary during this particular proc- :
ess and then return to their initial value. Similarly, V would be conserved : 3
in nonequilibrium processes that occur at fixed £ and S; S would be \ :
conserved at fixed £ and V. .
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The same relation given by equation (1.5) is conveniently expressed in
terms of other thermedynamic quantities. Substituting the definition of
enthalpy (H = E + pV) into equation (1.5), again for a closed system, one
obtains

B v et P e

di - Vdp -TdS <0 (1.6)
Thus enthalpy is a conserved quantity for systems kept at constant pressure |

and constant entropy. Similarly, if the free energy (F = F - TS) is substi-
tuted into equation (1.5), ,

dF+pdv+Sdl<o (1.7 oo
or the free enthalpy (G = # - TS) into equation (1.6),

dG - Vdp+SdTr <0 (1.8)
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Thus, F is a conserved quantity for closed systems constrained to fixed V and
T, and becomes a minimum for these systems at equilibrium. Similarly, ¢ is a
conserved quantity for closed systems constrained to fixed p and T and
becomes a minimum for these systems at equilibrium. In the laboratory, it is
more convenient to keep temperature, pressure, and volume constant than
entropy or energy, so the free energies are particularly useful for describing
the equilibrium state in the usual experimental situation.

The thermodynamicist thinks of entropy in relation to the amount of work
that can be abstracted from a system by reversible processes at constant tem-
perature. From equation (1.7), this amount of work is just the decrease in !
free energy:

(-dF)p = (0 dV)p

Thus, free energy F represents that part of the energy FE available for

work at isothermal, equilibrium conditions, while the quantity IS represents
that part of EF not available. Similarly, the decrease in Gibbs' free energy
is the work abstracted from this system plus the decrease in the quantity pV:

(-d6)p = (p Ay - d@V)p

The product pV represents the work done by 1 mol of ideal gas expanding at
constant pressure from infinite density to volume V. This product is also
sometimes referred to as flow work by fluid dynamicists (ref. 4).

Relations between thermodynamic variables at equilibrium and their
partial derivatives are readily derived from equations (1.5) through (1.8).
For example, in a closed system the pressure, volume, temperature, and entropy
are, respectively

@)@, o
V= (—ag)s - (ig)T = -7 (%)H - s(g—g ) (1.10)
- (), - (), o), - ¢ (),

@)@ @@, o

(Some of these relations are useful for the purpose of relating thermodynamic
quantities to statistical mechanics.)

When the thermodynamic relations are known, one can, 1in principle, solve
any fluid problem in which transport phenomena can be neglected (ref. 5) (i.e.,
where the effects of viscosity, conduction, diffusion, and radiation are all

6
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small). On2 needs to solve simultaneously, subject to the appropriate
boundary conditions, equations of conservation of energy, momentum, and mass,
and the equation of state, shown below in simplified one-dimensional, steady-
state form:

; B

g de+d(p)+udu=0 (1.13)
E i do + pu du = 0 (1.14)
? A udpo +pdu=0 (1.15)
- : p = p(p,T) (1.16)

where u s the fluid velocity. Such solutions may be very difficult in
gereral, aad the fluid dynamicist's task is to find particular or approximate
solu.ions to specific problems of interest. That small part of the problem
with which this book is concerned is to express the thermodynamic quantities
as functions of the appropriate variables so that such solutions are possible,
in principie at least.

If the gas is in equilibrium, the case considered for the present, any
two thermodynamic variables determine the complete state of the gas. As a

Ey

= general rule, solutions are simpler and mathematical expansions converge more
Y rapidly if independent variables can be chosen that are relatively constant

5 for the problem at hand. Thus, p and T are normally chosen if the process in
- question tends to occur at constant pressure, while p and T are convenient

for proi lems where density is relatively constant, and S and T are appropri-
ate for constant entropy processes. However, any other combination of two
variables can be used If approximate thermodynamic relations can be devised
which are simple enough analytically so that they can be inverted, the engi-
neer gains flexibility in the choice of independent variables.

1.4 PHISICAL CHEMICAL METHODS FOR OBTAINING THERMODYNAMIC QUANTITIES

Originally, therrod,namic quantities were determined by the physical
chemist, who developed ueans of measuring p, V, T, and also Aq, the heat
added to a closed rvstem. The specific heats could then be determined
experimentally:

) _ (1o
Cy = (AT ] (1.17a)

if mea< remerits were made in a constant volume device, or

.
oy = (AT)p (1.17b)

7 REPRODUCIBILITY OF THE
UnGINAT PAGE IS POOR
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if in a constant pressure device. Then, in the constant volume experiment,
the energy and entropy could be derived by the simple numerical integrations:

E = [c, dr (1.18a)
_ Q_va dar
S-IT = 7 (1.19a)
or, in the constant pressure experiment, enthalpy and entropy are obtained:
i =[fcp ar (1.18b)
Cp dT
S=J'%?~=f—?LT— (1.19b)

The other thermodynamic functions are all related, by definition, to the above
quantities. The constants of integration in equations (1.18) and (1.19) remain
undetermined; thus, energy, enthalpy, entropy, and the free energies were all
related to some arbitrary reference level (taken to be zero for a pure stable
gas at standard temperature and pressure, usually p=1 atm and T=273° K,
though both 288° Kand 293° Kare also often used as standard reference tempera-
tures). This was sufficient for many purposes where only differences such

as AE, AS, or AF are needed to solve the problems of interest. However, Aq
is difficult to measure accurately because of heat losses, truly constant
pressure or constant volume processes are hard to maintain, and, in any case,
there are practical limits to the range of T and p available to the experi-
menter. Thus, a more piecise method of determining the thermodynamic proper-
ties based on measured atomic and molecular constants is now used.

According to the results of statistical mechanics, all thermodynamic
properties of dilute gases can be determined from the energies e; and the
degeneracies g; of the unperturbed atomic or molecular states of the gas
particles. Fortunately, these energy levels are known very accurately from
spectrographic measurements in many cases of interest, and the degeneracies
are generally known as a result of quantum mechanical interpretation and clas-
sification of spectra. The fruition of these basic disciplines now permits
thermodynamic properties to be evaluated so precisely that other methods are

not normally competitive,
1.5 REVIEW OF BASIC STATISTICAL MECHANICS
Statistical mechanics is based on the following postulate:

Basic Postulate of Statistical Mechanics

Spontaneous processes of a closed system always lead to a more probable
state of the system as a whole. The qualification "as a whole" is included
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because, if a small part of the system is isolated, statistical fluctuations
can occur, leading to a transient, less probable state for that part of the
system. Such transient fluctuations lead to real phenomena such as Brownian
motion and scattering of light from the Earth's atmosphere, for example. How-
ever, in a practical sense, the postulate is found to agree with reality for
any system with dimensions large compared with the mean free path between
molecular collisions or where the state properties are averages over times

long compared with the mean collision time. This time irreversibility of
spontaneous processes in closed systems is deduced in a sense from the
Boltzmann H-theorem (ref. 6), which might be considered a proof of the above
postulate. lowever, the result of the Boltzmann H-theorem is really intro-
duced by the assumption made that the molecules entering collision are uncorre-
lated by past history (ref. 6); this assumption autcmatically introduces a dis-
tinction between past and future into the kinetic gas model. For purposes of S
this book, it seems appropriate to merely state the postulate as one that ;
agrees with observed behavior of systems rather than attempt to prove the i
postulate from more fundamental principles. According to the above postulate,
an equilibrium system resides in its most prcbable state. This maximum proba- !
bility is subject to the constraints imposed on the system, such as the total ]
volume, the pressure, the number of molecules, or the energy, etc. !
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A quantity W, called the thermodynamic probability, is defined as the :
number of equivalent ways the fundamental particles of the system can be dis- ’
tributed in the different states available to these particles. The quantity
W 1is not really a probability since it is not normalized to unity, but it is
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proportional to the probability so that, at equilibrium, ¥ is a maximum. In
probability theory, ¥ 1is called the number of permutations. One can see that
Y W has properties similar to the entropy S, which also tends to increase as a
& result of spontaneous processes and become maximum at equilibrium. However, ;
& the second law of thermodynamics defines entropy as an extensive property so )
ﬁf that the total entropy of several systems is the sum of the individual :
T entropies
. S=28; (1.20)
£ 1 :
f whereas the total thermodynamic probability is the product of the individual 4
- thermodynamic probabilities, !
" T ).‘
W= l‘l Wy (1.21)
t
; Consequently, S must be proportional to the logarithm of W: i 1%
& i 7,
S; =k In W (1.22a) i
S=kinw (1.22b) i
%Y Note that if some constant different from zero is added to equation (1.22a), a 2
. different constant then appears in the summation given by equation (1.20) and 3

v in equation (1.22b). Consequently, the constant must be zero to maintain an
’ invariant functional relation between S and W. This fact establishes the
absolute level of entropy.
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Equation (1.22) constitutes a fundamental definition called the Boltzmann
definition of entropy. In fact, the dimensionless quantity ¥ could be used
in place of entropy. However, the latter was defined and measured empirically
long before the statistical relations were understood, so the precedent is now
well established that the dimensional quantity S is used to describe the
direction of spontaneous change in thermodynamic systems. Where the loga-
rithms are taken to the base e, the proportionality constant between S and
In W must be the Boltzmann constant k to match the statistical and
thermodynamic definitions of entropy.

The thermodynamic probability # 1is a measure of the uncertainty about
the system. If the state of the system were precisely known, ¥ would be
unity and the entropy would be zero. This situation exists at absolute zero
temperature for many systems. If an uncertainty exists whether the system is
in any one of W equally probable states, the entropy is k In W. The larger
the uncertainty in the state of the system, the larger ¥ and the entropy
become.

Strictly speaking, W should zpresent the total number of states
available to the system. However, it will be more convenient to use W to
represent a more limited quantity, namely, the total number of states of a
system constrained to have a given set of occupation numbers n; for the
particles that occupy each available state <. In other words, the uncer-
tainty in this hypothetical system arises from the exchange of like particles
between states, but the distribution function for the values of n; remains
fixed. This model is useful because it allows one to define the entropy of
both equilibrium and nonequilibrium systems and, for most practical purposes,
it yields the same result as if the distribution function for the occupation
numbers n;{ were allowed to fluctuate. Real systems are in a dynamic state
of fluctuation, of course, because of collisions and photon transitions, for
example. Thus, in real systems, the occupation numbers n; fluctuate about
some mean value. Only the energy and the total particle number »n are con-
served for a system isolated from its surroundings, and the fluctuations in
the occupation numbers means that a manifold of additional and equally prob-
able states are available to the system, increasing the uncertainty about the
system and therefore the entropy of the system. For this reason, many authors
(refs. 7-9) prefer to define a quantity § as the total number of states
available to the system with a given energy, to distinguish it from the quan-
tity W representing the thermodynamic probabilities for systems constrained
to single sets of occupation numbers n;. Thus,

a= 2w (1.23)
E=const

where the summation extends over all sets of occupation numbers which result
in the given total energy. The equilibrium system is that one for which all
) are equally probable, and the entropy of the equilibrium system becomes

S=kingQ (1.22¢)

10

REPRODUCIRTI ITY OF THF
DRIC\\; . NN

AP

%

i

N e

ol o s A e

B R ot R



5 Y

SRR R ST

e ;\7\:}’1‘&‘@ i %3?@ MQ@*&W&}@A, “»\:g%-{,;(; f&f,v;vg“%ﬁil;:%-. R = :g : R

s
e

. “ T ' N
» ST e |

-

P T L
bl

P ]

. o e . : A

Gibbs developed the concept of the ensemble to deal with problems
associated with fluctuating occupation numbers. The ensemble represents a
hypothetical distribution of equal energy systems, each of which can be
described as a point in én-dimensional phase space (three position coordinates
and three momenta for each of the »n particles in the system). As the parti-
cles of the system move about in physical space, the location of the system
moves in phase space. The density of these system points obeys the same set
of Liouville equations that determine the flow of a nonviscous fluid (refs. 10
and 11). The density of systems in the volume element about a point in phase
space is proportional to the fraction of time that a real system will be found
in that particular configuration with its particular set of occupation numbers
n;. A canonical ensemble is that particular ensemble that is steady state in
time. The thermodynamic probability & is the total number of different con-
figurations found in the canonical ensemble and is a constant. The quantity
¥ is the number of member systems of the ensemble which have the same aistri-
bution function for the occupa:ion numbers; it may be considered a fluctuating
quantity .nat represents the thermodynamic probability of a system at a given
instant of time.

The canonical ensemble is sometimes also called the mierocanonical
engemble to distinguish it from the grand canonical ensemble, another concept
introduced by Gibbs. The grand canonical ensemble is an ensemble of equal
energy systems with all possible total numbers »n allowed (whereas n is a
fixed quantity in the closed systems considered so far). This ensemble is
useful for treating the open systems considered in respect to chemical equi-
librium in chapter 2. Although the ensemble concepts have proven very useful
in deriving certain average properties of real systems (ref. 12), with the
advantage of hindsight we can now derive the properties of interest without
these concepts, focusing attention on a single system and using the fact that
@ can be approximated quite well by the maximum possible value of ¥, that is,

Wmaz -

For quantitative applications, the entropy is expressed as

S=Kkinbyg+kIn (1.22d)

Wmazx

The first term, k In Wpge, which can be calculated with reasonable accuracy,
represents the entropy of a system constrained to the most probable distribu-
tion of occupation numbers. The second term, kX In(/Wpqy), can be approxi-
mated only roughly. However, in section 1.12, we find that this term is the
same: order of magnitude as terms that are neglected in evaluating k In Wp..
and it represents the increase in entropy required to account for fluctuations
about the most probable state. For most systems of practical interest, the
number of particles is very large (typically the order of 1019) and, in this
case, the correction is truly negligible. TFhysically,this means that in sys-
tems having large numbers of particles, the fluctuations about the mean dis-
tribution are percentagewise very small!

The advantage gained by use of equation (1.22b) as the basic definition
of entropy, with W defined as a variable representing the thermodynamic
probability of a fictitious system constrained to a single distribution

11
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function, is that the definition can then be applied to both the equilibrium
and nonequilibrium cases whenever the distribution function for the occupation
numbers n; is known or approximately known. (Again note that Q is a con-
stant and equation (1.22c¢) can be applied only to the equilibrium conditions.)
This is useful, for example, when small sample systems are examined in which
the entropy, as well as cther thermodynamic quantities, may have sizeable
fluctuations of interest. Again, the entropy can be assigned to a highly non-
equilibrium system at each instant of time if the rate of change of -the popu-
lation numbers, n;, is known starting from some initial condition. In both
the equilibrium and nonequilibrium cases, there will exist a fluctuation in
occupation numbers in real systems which will require an added term in the
expression for entropy; but in most practical situations, the correction will
be negligible. Usually, only changes in entropy are needed, and the rela-
tively constant correction term is superfluous in this case.

At this point, it may be helpful to include a v comments about the
difference between classical and quantum particles since some confusion exists
about these differences in both the literature and the classroom. Classical
particles are considered to be completely distinguishable from one another by
virtue of their position in space and time. Thus, for a system of = classi-
cal particles, there exist n! different configurations of the particles that
can lead to the same observable state of the system, namely, the configura-
tions that arise from the n! different exchanges of two like particles. The
n particles in a solid-state crystal lattice intuitively seem to satisfy the
requirements of distinguishability and, indeed, the solid-state crystal can be
modeled very well by use of the classical particle concept. In gases, the
distinguishability of the particles seems less obvious. The particles are
free to move about and exchange position, but, in principle, according to
classical mechanics the positions and momenta of all particles of the system
are known at any future time if the initial conditions are given. In this
sense, the classical particles are distinguishable even though the labor
involved in keeping track of the huge number of particles involved in normal
systems would be prohibitive, even for modern computers. However, Gibbs and
other early thermodynamicists found that when all =»n! states of sich a gas
were considered distinguishable, the entropy obtained statistically was too
large. A nonvanishing zero level entropy was derived which led to the famous
Gibbs paradox: the total entropy of suct a system did not equal the sum of
the entropies of its parts, as required of an extensive property (see
eqs. (1.20) and (1.22)). The answer to this paradox was forthcoming only when
quantum theory was developed. Strictly speaking, all particles obey quantum
mechanics; classical behavior is merely a limiting behavior that is approached
in certain cases, as for the highly localized particles in the solid, but it
is not approached in others, as for the free particles in gases.

In quantum mechanics, the probability that a particle < will be found
in a volume element of space, dx; dy; dz;, is given by the product of the
volums element and the square of the particle's wave function
wiz(xi,yi,zi)dxi dyi ds; (ref. 13). These wave functions are discussed in
detail in chapter 3 and thereafter; for the present, it is sufficient to point

out that if a system of »n identical particles exists in which the particles
arc isolated (as in a solid), the individual particle wave functions do not
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overlap and the particles can then be treated as distinguishable. If, on the
other hand, the particles are free to occupy the same region of space (as in a
gas), the individual particle wave functions all overlap one another and the
particles must then be treated as indistinguishable. Then the n! exchanges
of particles must be considered to result in the same identical state. Mathe-
matically, this situation is modeled by expressing the wave function for the
entire system of isolated (distinguishable) particles as the product of all
one-particle wave functions (see section 4.7):

n

V(q,0q, - ay) = ] ;) (1.24)
1=1

There are 2! ditferent wave functions of this type, corresponding to all
possible exchanges of the coordinates of two like particles. (Note that 9;
represents three coordinates in physical space, and that the system wave
function is a function of all 3n space coordinates.) On the other hand, the
wave function for a system of (indistinguishable) particles with overlapping
wave functions must be expressed as a determinant (again see section 4.7):

LY CPYIR PYCPO BRI M T
V(5955 « +»q,) = |¥0q3)  ¥(q3) - . . . (1.25)

v, (q,) IJJn.(qn)

which already accounts for all possible interchanges of two like particles.
The point is that this function represents a single state of the system, not
n! states. Molecules in a gas behave as free particles and, as shown in
chapter 3, free-particle wave functions extend throughout the entire available
volume. Thus, the gas particie wave functions are all overlapping and the
total wave function for a gascous system of particles must be represented by a
function of the form of equation (1.25). The solid, on the other hand, can be

adequately modelled by n! different functions of the form of equation (1.24).

In a liquid, the purticles are neither strictly localized nor free; this situ-
ation is more difficult to model than the limiting cases that represent the
solid and gaseous states, but the wave function will obviously have the char-
acter of a product of lower rank determinants that represent the wave func-
tions of small clusters of nearly indistinguishable particles. The number of
different states of a liquid system provided by interchanging these cluster
groups is much greater than unity but smaller than n!. Similar considera-
tions are necessary when one corrects the idealized gas model to account for
high-density effects that lead to slow diffusion of gas particles and, in
effect, some localization of the particles. Again, at high temperatures, the
diffusion effect in solids leads to some overlapping of single-particle wave
functions and some indistinguishability of the particles.
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5 1.6 SOLID-PHASE STATISTICS

L SN

The gas phase is of primary concern here, but it will nevertheless be
inztructive to consider first a system of n localized and therefore distin-
guighable particles (as in the solid phase). Subsequently, in the gas phase

/ system considered, the particles are all free tc occupy the total volume and
! are therefore indistinguishable. By this procedure, certain important
differences between these two cases can be noted.

The nu~ber of ways n distinguishable particles can be chosen to occupy
the availab. states %, with a given set of occupation numbers nyg, is the
thermodynamic probability

- wentll (1.26)
x

_1_._
1
nk.

(Derivations of the mathematical expressions used for W are presented in
references 10, 11, and 14 among others; appendix 1-A presents a brief review
of these derivations.)

Systems of interest often have & number of states with the same energy
level €:, and the number of such states is called the degeneracy of that
level g.. In this case, it is convenient to express the distribution func-

£ : tion in terms of the numbers of particles =n; that occupy each level <. The
i = thermodynamic probability for the solid phase system is then expressible as
: | .
. ~gl
* wemnt || = (1.27)
T 1

If Stirling's approximation for the logarithm of factorials of large numbers
(refs. 10, 11, and 15)

Inn! =aninn-n+ % in 2mn (1.28)

is used with equation (1.27), an approximate expression for In W is i

e
ZnW=nZnn-n+%Zn21m-z<1ian—-ni+%ln2nn1;) (1.29)
Z 1
Not all the numbers n; are so large that Stirling's approximation is

justified. However, the tota! number of particles in the system may be taken
so large that the approximation is fully justified for all cells that contrib-
ute app-eciably to the total thermodynamic probability W. In fact, if only
terms of orders n and n; are retained:

nt
InW=nlinn -Zni In 37% (1.30) !
91
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The neglected terms are self-compensating for the small occupation numbers so
the results are the same as those given by the more rigorous derivation of
Darwin and Fowler using the method of steepest descent (refs. 16 and 17).

The values of n; are subject to the restriction that the total number Cn
of particles be fixed:

n-2m; =0 (1.31)
1

¥ and that the total energy be some finite constant E,
%
% E-{;eini =0 (1.32) ;
%‘ At this point, Lagrange's method of undetermined multipliers is used
g-' (refs. 11, 14, and 15) to maximize W, subject to the above constraints,
4 Equations (1.31) and (1.32) are multiplied by arbitrary constants and addec
é equation (1.30). The derivative of this sum with respect to n; must be zero
i for all n; when ¥ is an extremum subject to the given restrictions. The
) constant multipliers are designated here by (o - 1) and B, respectively,
& merely to put the final results in the traditional form. Then .
3 In W 3 3 _ ;
. 5 $ o - 1) g n-EnJ "B E-Zejnj =0  (1.33) :
’ J J

From equations (1.30) and (1.533}, the most probable distribution of occupation
numbers is found to be

= '(G*Bei) - e
;1 =9;¢€ (1.34) (
the general form of the Maxwell-Boltzmann distribution. The constant a is

just a normalization factor that equates the sum of all n; to the total

number n, as required by equation (1.31),

- -Be;
== N e (1.35)
7 7

The summation on the right-hand side of equation (1.35) is called the -
partition function, aesignated here by the sumbol @: i

€,

-8
Q = Zgie T (1.36)
1.

The partition function is particularly important because all equilibrium
thermodyr amic properties of a system of particles can conveniently be derived
from it.

15
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In terms of the partition function, the Maxwell-Boltzmann distribution,
equation (1.34), can be expressed as

Be

n, = % g e- i (1.37)

1 @ Y1
and the total energy of the system by

-B¢., ‘
E=Zii=%§:ezge v (1.38)
1

1

while the thermodynamic prohability according to equation (1.30) is given by

nlnn —2%};:g. e

nin § + BE (1.39)

[t

n W Yinn - In Q- ey)

24

Then the entropy of a solid-state system or a system _f distinguishable
particles is

S=KkInkW=nking+ kg (1.40)

If each state werec treated separately with a degceneracy g = 1, the same
results wculd be obtained. For example, thie partition function and the
Maxwell-Boltzmann distribution could then be collapsed from a sum over all
different states k to a sum over all different encrgy levels <:

-Beq, Ii -8¢ -Be .
e Ptk = E Z e K =Zgi e *t (1.36a)
> 7

%

I N e L (1.37a)
T I AT A .

k=1
€71

with results identical to those given before in equations (1.36) and (1.37).

The partition function, often designated by the symbol Z rather than
@, is sometimes called the state swn or Zustandssumme. The term state sum

originally indicated a summation over only the internal states of the particle,

whereas the partition function includes a summation over bhoth internal and
kinetic energy states. Here the term state sum is reserved for a somewhat
different concept to avoid an ambiguity that often appears in the literature
between the partition function and the state sum as defined here. Tho parti-
tion funetion is the sum over all states available to cach particle that is a
member of the system; the ¢t gt is the sum over all states available to

16
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each system that is a member of an ensemble of systems {n which the total
system energy E can take all possible values. This state sum is designated
here by @, to call attention to both its difference and its relation to the
partition function @:

§
;j

=Y 2" BE; (1.41)
J=1

Often we have a situation where the individual particle energies are independ-
ent of one ancther, in which case the total energy may be expressed as

n
5= ) e (1.42)
k=1

S o T AT T

S N
ok,

where the summation extends over all n particles residing in the various
states with energy ¢€;. Thus : 5

n
28X NI g
Q, = e k=1 " - E 1T e (1.43) .
J=1 J=1 k=1

The sum over all j includes everv possible state k of every particle, so :
we may factor out n identical quantities @: i

T E2™ - T T

)
*

n

%=£la=w (1.44; % ‘
=1 t ‘,’

.
s e e
,

where the g temms are the single-particle partition functions defined J :
prexiously. The thermodynamic properties of a system may all be e:pressed in '
terms of the state sum @, as well as of the partition function; for example, -

SRl R O

InW=1ngq,+ 8% (1.39a) . ‘
f ) S=kinq, + keE (1.40a) o
: & ‘ :
%? The relation between the state sum and the partition function given above is ;
& valid for distinguishable particles only; the product @" includes all n! N
%‘ exchanges between like particles in the system. For gas phase where the par- C e
ticles must be treated as indistinguishable, the state sum is identified with : ‘.
Q*/n!.

1.7 GAS PHASE STATISTICS

Gas phase differs from solid phase in that all particles are free to !
g occupy the entire volume and, for a pure phace, the particles are identical i
?’ and therefore indistinguishable trom one another. This indistinguichability ;
W changes the statistics since the 7! permutations of the 7 particles with !
. |
A-5926 17 :
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one another represent a single observable state of the system. Thus, the g

thermodynamic probability, that is, the total number of different ways the

particles can occupy the available energy levels < with a given set of occu-
pation numbers n;, becomes

" ni
; 3 T 92 :
A | we=ll = (1.45) :
3 vt o
s % in place of equation (1.27), the solid-state relation. § i
! Ry | .
i % One might object that equation (1.45) could be less than unity if occupa- : .
i -3 tion numbers n; were much larger than the available degeneracies g.. How- P
- % ever, the particles are so far apart in the gas phase that the degeneracies of
' % available kinetic energy states (derived in ch. 3) are much larger than the
: £ number of particles available to fill them. This means that the most probable Z
’ g occupation numbers in any singie state are 0 and 1. One immediately sees the %
H t advantage gained in summing over energy levels with large degeneracies rather g i

=t

than summing over all states with degeneracy one; the occupation numbers n; ; B
can then become large enough that Stirling's approximation can be used for the
p . factorial quantities. Also, since the g; are much larger than the n;, one
. can see that ¥ is indeed larger than unity. The logarithm of ¥ for gas

- n phase systems is

AL

C LAY

e
Rt e g w3

e gt

: ~ W =3 (n Ing,- Inng!) (1.46) 3
L . 'L
: ,, )
: : which, with Stirling's approximation, becomes $
v n. ‘
inwW=- ; n. n —= - ny + l-ln 2mn.;
~\* 9 2 v , :
T 5 i
M. :
g :
« 5 -S e In E 1.
ng in 2 (1.47)
1 5 7
, where again only terms of order n; are retained in the last expression 1 ¥
: above. [xcept for the constant term, the functional relation between W and 1 .
! n; 1is the same as i~ equation (i.30) and leads to the same form for the 3 r i
’ Maxwell-Boltzmann distribution as before, equation (1.37). Also, the total i e
energy of the system is again given by equation {1.38). However, the thermo- 8 <
dynamic probability now has a slightly different relation to t'e partition ; .
function @q: é :
i
mW=n-2 e-BEi(Zn n-1n@g - 3e;) i r
ngi g i
7 ; :
*nu-ninm+nling+ BE 2
: =n in e, BE + n (1.48) % :
{ n ] :
18 ;

-t
P BN

Bt
‘x




G ke ET e e oMoy s,

S me——— ey ey

rovrye’

and the entropy of a gas phase system of particles is
S=kinW=nkinderr«nk (1.49)

This appears to be somewhat similar to the expression for entropy of a solid-
state system of particles given by ~quation (1.40), except for the constant
-nk(ln'n - 1). However, this constant is very important in establishing
reference levels for the free energies and the criteria for chemical equilib-
rium in the gas phase. Classical thermodynamics alone was unable to establish
a unique reference level of entropy, and a major contribution of statistical
mechanics and quantum mechanics is that an absolute value of entropy is pro-
vided. The reader can readily sense that the expression for entropy of a
liquid phase system is something intermediate between equations (1.40) and
(1.49), representing a case in which the particles are neither strictly local-
ized nor free. Strictly speaking, the above models are not entirely precise
for the solid-state and gas phases either. In solid state, atoms can diffuse
through the crystal lattice and interchange with one another, leading to a
certain degree of indistinguishability of the particles. Similarly, diffusion
is slow in very dense gases leading to a certain degree of distinguishability
of the particles according to their position. However, these effects can be
treated most easily by considering them to be perturbations on the idealized
mcdels presented previously rather than attempting to work from a more exact
model at the start.

At first glance, one might think that the entropy of a gas is less than
that of a solid because of the large negative factor -nk(In n - 1) added to
the expression for gases, equation (1.49). However, this is not the case; the
available degeneracies in the gas are so much larger than in the solid phase
that the entropy increases by a large amount when a solid system of n par-
ticles is vaporized. This agrees with our intuitive sense that the uncer-
tainty in the state of a system is greatly increased as it transforms from the
solid to the vapor phase.

Just as for solids, the thermodynamic probability W, entropy S, and
other thermodynamic properties of gas phase can be related to the state sum
Q, in place of the single-particle partition function . However, in this
case,

"
Qn = %? (1.503)
m@p=nin@g-ninn+n (1.50b)

and the expressions for ¥ and S become

inW=1n ¢, + 8E (1.48a)
S=kin@Q, + kpE (1.49a)
19
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which are identical to the expressions derived for the solid-state system. In
this sense, the state sum Q, is a somewhat more universal parameter than the
single-particle partition function Q.

Because of the -onfusion that exists between the partition function ¢
and the state sum &,, the statistics of gas phase are sometimes treated as
though the particles are classical and therefore distinguishable, leading to
the same expressions as for the solid phase. Then, the single-particle parti-
tion function @ is shown to be proportional to the available volume (as in
ch. 3) and the argument is made that the free volume per particle is the total
volume V divided by the total number of particles =n. The rationale given
for this assumption is that V/n is the average volume available which is
free of perturbation from neighboring particles and that collisions with the
neighboring particles limit the number of free-particle momentum states that
should be counted in evaluating the degeneracies g;. This limitation of the
free volume introduces the additional factor =-!, which leads to the same
results obtained above, where the gas was modelled as a collection of parti-
cles free to move without perturbation throughout the entire volume V.
Although collisions with other particles inhibit some of the momentum states
available in a gas system of particles, the mean free path between collisions
is known to be much larger than (V/n)!/3. Thus putting the gas particles in
potential boxes of size V/n is physically unrealistic, even though the
Tesults obtained with this model are valid.

The remaining thermodynamic properties of a system can now be derived
from the foregoing results for the thermodynamic probability, the distribution
function, and the entropy. However, we digress for the moment to discuss
classical analogs to the Maxwell-Boltzmann distribution, to the partition func-
tion and the state sum, and to evaluate £ in terms of temperature.

1.8 CLASSICAL STATISTICAL MECHANICS

The Maxwell-Boltzmann distribution expressed in integer form,
equation (1.34), is obviously appropriate for quantum particles where one
needs to sum over discrete or quantized states. However, these states often
lie close together and can conveniently be treated as a continuum, in which
case the equivalent classical integrals for the partition function and the
state sum are appropriate. In fact, the integration 1s often easier to per-
form than the summation. In such integrations, a quantum energy state
corresponds to a volume element of classical phase space dp dg, which is a
shorthand notation for a product such as dp, dby dp, dx dy dz, involving all
momenta and coordinates available to the particle. The Maxweil-Boltzmann dis-
tribution of equation (1.34) may thus be expressed in differential form as

dn

p = m = _Z_ e'BH(p:q) (1.51)

where p represents the density of the distribution in particle phase space
and HA(p,q) is the energy of the particle, in general a function of all the
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particle coordinates q and momenta p. The constant multiplier n/Q has
already been chosen to normalize the integral of all dn to the total number
of particles n, where the quantity @ is the phase integral:

e=fJ ¢ BEP:)y, 4, (1.52a)

which is the classical analog to the partition function. The integrations are
performed over all the coordinates and momenta available to the particle,
which may be a sizeable number if the particle is a polyatomic molecule. For
a single structureless particle, the integral is sixfold, corresponding to
three independent coordinates and three independent momenta. The deg:neracy
g does not appear because states with the same energy are automatically
counted when integrating over all coordinates and momenta, which is equivalent
to setting the degeneracy g to unity and summing over all states to obtain
the pa-tition function (as in the first expression of eq. (1.36a)).

One difference between the phase integral and the partition function
remains; equation (1.52a) is a dimensional quantity and the value of the inte-
gral depends on the units chosen for the coordinates and momenta; the parti-
tion function, on the other hand, is dimensionless. Before the advent of
quantum theory, there was no way to choose one set of units over another, and
Gibbs had no choice but to leave the phase integral in the form of equa-
tion (1.52a). In fa.t, the classical relations could be expressed equally
well in terms of velocities and coordinates rather than momenta and coordi-
nates. The latter were chosen here with the advantage of hindsight provided
by the Heisenberg uncertainty principle (see ch. 3), which shows that a single
state of the particle includes a region of phase space with the size

dp; dq; = h (1.53)

where h is the Planck constant. This establishes the relation between units
that must exist so the phase integral quantitatively agrees with the partition
function. Thus @ is written in dimensionless form as

_ 1 -8H(p,q)
« Q-hfﬂ'e dp dgq (1.52b)

where f, the numbefwof degrees of freedom, is defined as the number of inde-
pendent sets of space and momentum coordinates that appear in the energy

function H.

The choice of the particular set of coordinates and momenta used remains
arbitrary because the best choice, cependent ¢n the functional form of the
eieryy H(p,q), is that se: which permits the integral to be evaluated most
easily. For the free particles treated in chapter 3, the Cartesian coordinate
set is most convenient, for example

Q= z%fﬂfﬂe"""(Px'Py'Pz’WJ»z)dpx dpy dpy dr dy da (1.52¢)
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But other coordinate sets, such as cylindrical coordinates or spherical -~ -

coordinates, for example, may be required for different problems. The appro-*
priate sets are called conjugate momenta and coordinatee and the units of each
must be chosen so that their products equal the Planck constant. The energy
function must be expressed in terms of a conjugate set, and when thus

expressed it is called the Hamiltonian. A conjugate set of momenta and coor-
dinates p;,q; is a set that puts the Hamiltonian differential equations of
motion in eamontcal form, namely,

3 dpy on ;- e
— T - ? — . (1 . 54)

Usually, the coordinate system is chosen first so that it conveniently
fits the boundary conditions of the problem at hand, thereby simplifying the
mathematics. The conjugate momenta for these coordinates are then found
according to the following recipe:

1. The Lagrangian function L, the difference between the kinetic energy
T and the potential energy V, is expressed in terms of the chosen coordi-
nates and their first derivatives with respect to time as
L(Qisqi) = T(qi’q‘i) - V(qi) (1.55)
2. The momentum p., which is conjugate to q;s is simply the partial
derivation of L with respect to q;:

3L

= 1.56
R (1.56)

Py
3. The time derivatives ¢. are determined as functions of the conju-
gate sets pj and q; from the inverse relation to equation (1.56).

4., Finally, the Hamiltonian is expressed as a function of just the
conjugate set of coordinates and momenta:

H(p,q) =Zpi‘7i(pk’qk) - L[é.,;(Pk,qk).qi] (1.57)
1

The derivation that equation (1.57) is indeed the total energy T + V and
that the equations of motion take the form of equation (1.54) may be found in
standard texts on mechanics and quantum mechanics (e.g., refs. 13 and 18).

In many cases, the Hamiltonian function can be formulated by inspection,
and one need not resort to the recipe above. In more complex cases, following
the recipe may be the best way to keep track of all the terms involved. Of
course, once the phase integral has been set up in terms of the conjugate
coordinates and momenta, the same value of the integral may be found by any !
equivalent transformation of coordinates. For example, it is often convenient o
to change momentum-space coordinates to energy-space coordinates. Then the '
degeneracy of states having the same energy is simply the absolute magnitude
of the Jacobian for the transformation

22
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di dq (1.58)

fe
L = ,I(Ehﬂ
dp dq I H,q

In the absence of external or intermolecular forces, the energy of the
gas molecule is independent of the space coordinates (such as &, y, and 3).
- Integratirg over these coordinates then simply yields the available volume V.
Thus a rclation valid for dilute gases in the absence of external forces is

V = H 3 ’
§= E?.Ufe BH (P Py »Pa) gp_ dpy dp, (1.59)

Note that for gases (@/n) is the quantity on which the thermodynamic probabil-
ity ¥ and the entropy S depend (eqs. (1.48) and (1.49)). Thus the appro-
priate volume that enters these definitions is the free volume per molecule,
V/n. If V 1is the molar volume, then the appropriate number of molecules is
the Avagadro number N.

A y-space phase integral (also used in the literature) is the classical
analog to the state sum as defined previously; y-space is the 6n-dimensional
space in which the ensemble is treated; each system in the ensemble is L
described by a point in y-space. The Hamiltonian of such a system is gener-
ally a function of all 6n momenta and space coordinates available to the n
particles of the system, and the vy-space phase integral may be expressed as

1 'H »
M "z?ﬁf ' f Do) dp, . - . day, (1.60)

Note that the factor n! is included in the denominator to account for the
interchangeability of the particles, -without changing the state of the system
(see section 1.5). 1If, and only if, the Hamiltonian can be expressed as a sum
of independent single-particle energies, all with the same functional form

e(ps,94): j
n
Hp,q) = 2 €(p5,q5) (1.61) ;
i=1 .
then the integral can be decomposed into » identical, single-particle phase |
integrals @&: /f
n v,
.1 -Be(P;,9;) 1 . ‘
o o I ] .62 |

The y-space phase integral is convenient to use later (ch. 8) to analyze the
corrections to ideal gases required to account for particle interactions.
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1.9 EVALUATION OF 8

The constant B determines the total energy in accord with
equation (1.38). If the results of kinetic theory are assumed to be estab-
lished, B can be evaluated simply by considering the special case where ¢
is just the kinetic energy of a free particle, namely, (pzz~+py2-*p82)/2m.
Expressing the momenta in terms of the velocities (p, = mk, etC.), one finds a
differential form of the distribution function, equation (1.51),

372 - 22,09 22
dn = n %) o (Bm/2) (F*+9%+5%) 3o 4o g (1.63)

where the normalization is already adjusted to »n molecules per unit volume.
Equation (1.63) is just the familiar Maxwell-Boltzmann velocity distribution
given by the kinetic theory of gases (ref. 11) and, by a comparison of terms,

B = 1 (1.64)

Other ways can be devised to evaluate B. For example, if the ideal gas
law is accepted as an experimentally proven relation for dilute gases, the
pressure of gas particles in a Maxwell-Boltzmann distribution can be calcu-
lated as a function of B8 and equated to the ideal gas value #nkT. The
details are left as problem 1.1.

Problem 1.1: Determine the pressure of a dilute gas (zero interaction energy between molecules) by
calculating the flux of the normal component of momentum over a unit surface for the distribution given by
equation (1.63). Show that p = n/8; thus B must equal (k7)-} if the perfect gas law is accepted as valid
for dilute gases.

The significance of B does not depend on the restricted nature cf the
problem considered above and equation (1.64) is a general relation. In fact,
the quantity B8 would serve to characterize the state of a gas just as well
as T, but we have grown so accustomed to thinking in terms of temperature,
that it is well to continue to express thermodynamic relations as functions of

this parameter.

The average kinetic energy per molecule for the distribution of equa-
tion (1.63) is

3/2 YY)
& = E_gﬁ: ;ﬂ“) fff% (¢2+yz+éz)e-(8m/z)(x YY+z) g &y da

3 _ 3KT (1.65)

28 2

Thus, a fundamental definition of temperature is a quantity proportional to
the average kinetic energy of the molecules in a gas, when their individual
kinetic energies are distributed in a Maxwell-Boltzmann relation. Normally,
one need not consider other distributions for the kinetic energies in gases
since the collision-induced relaxation to the Maxwell-Boltzmann distribution
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of velocities is very rapid, the order of the mean collision time. However,
nonequilibrium distributions will often be encountered in connection with
internal energy states, which may be out of equilibrium with the kinetic modes
of energy.
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The internal energy of a gas molecule is normally independent of the -
kinetic energy of the molecule, and the velocity and internal energy coordi- G
nates are then separable. In this case, the total molecular energy may be ?
expressed as

-

c = ’—;- (:hz + yz + 32) + Eint (1.66) '

where e;,. represents the rotational, vibrational, and electronic energies
of the molecule. Then the integration over internal energy coordinates in
equation (1.51) yields identical factors in the numerator and the denominator.
Thus the average kinetic energy has the same form as equation (1.65), and T - :
retains its significance as a measure of this kinetic energy, whether other
modes of energy are available to the molecule or not. The following problems
are designed to convey the concept that a mixture of gases in complete equi-
librium can have only one temperature, and that a separate temperature-like
quantity can be used to characterize each mode of energy frozen out of equi- ; y
librium, that is, each mode for which energy does not exchange readily with ‘
kinetic energy.

Problem 1.2: Show that, for a mixture of different gases in complete equilibrium, only one factor 8 y
appears in the derivation of the most probable distribution. It follows that the same temperature applies to all v
compenents of the gas. ' B

Problem 1.3: Show that, if a gas is frozen in a state out of equilibrium, the number of independent
Lagrange multipliers 8; needed to describe the most probable state of the gas is the number of modes of energy,
or combinations of modes, in which energy is conserved (frozen). These constants are often regarded as tempera- B
tures, or pseudo-temperatures, that would describe the kinetic energy of the gas if it were in equilibrium with 7
the internal energy mode in question. Note that the most probable distribution of internal energy is still g
Boltzmann in form, even though it may be restrained from reaching equilibrium with the kinetic enesgy mode. x

1.10 EQUIPARTITION OF ENERGY

One of the important consequences of the Maxwell-Boltzmann law is the i
equipartition of energy. The statement is often made that, at equilibrium,
(1/2)kT 1is the average energy per molecule in each degree of freedom. Equa- ‘ ;
tion (1.65) is a special case that illustrates this result for three degrees ;
of freedom. However, this statement is not general enough to be satisfactory. f' 4

For example, it is somewhat troublesome to explain why a harmonic oscillator !3
should have two degrees of freedom, when only motion in one direction is :
involved. The reason is, of course, that the harmonic oscillator has a poten- &

tial energy mode associated with its position coordinate as well as a kinetic 5
energy mode associated with its momentum; therefore, two degrees of freedom .
are associated with each direction of motion in this case rather than one vk
degree of freedom with each direction of motion as for the particle in poten- )
tial free space. A more general statement of the equipartition principle that ] .
clearly defines the meaning of a participating degree of freedom is as follows:

s

g

o
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Theorem: If the energy 4 becomes infinite at the limit of each of the sets of conjugate coordinates q;
and momenta pj, then at equilibrium,

oH od

qimn pjgt;:s kT (1.67a)

To prove this theorem, let gq. Then, from the differential form of
the Boltzmann distribution, equatlgn (1 51), the average value of ql(aH/aql)
is

oF 1 98 -H/kT
—=x1... — e ...d 1.67b
9 aql Qf fch aql 441 pp ( )
The integral can be written as

T R RN L G NI S R0

which can be integrated by parts over gq; to give

b
15”’”‘ dg,- - .dp,,-f. . .fe'”’kT d,.- - .dpr)
@ /

(1.67d)

A
qla = =7

The first term vanishes if H# becomes infinite at the limits a and b (these
limits are +» in Cartesian coordinates). The integral in the second term |
just cancels the phase integral & so that, as stated by the theorem,

i

3H -
q, 3q1 kT (1.67e)

The same result holds for any of the g¢; or p; terms.

Typically, the first-urder terms in molecular energy are quadratic in
momenta and coordinates. In the most general case, let I and m be the num-
ber of different momenta and coordinates, respectively, involved in the
quadratic terms:

m
He= 2 aigpp;+ 2 bigaa; + VP, .« Pl - )
1,J=1 2,d=1
(1.68a)
The coefficients a;s and b are constants or functions of the remaining
coordinates pZ+1 .. pr.qm+1. . + qp. For generality, a term V that is
not quadratic in these remaining coordinates is included. The sums are homo-

genous functions of order 2, so Euler's theorem (ref. 15) can be applied to
transform the energy expression to
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1 OH
H-—Zpi EZqJ aq + V (1.68b)

i=] J=1 J
Taking the average value of both sides and using equation (1.67e), one obtains

ﬁ-(l+m)-k51:+'l7 (1.69)

In many practical cases, the value of 7V is zero or nearly so, but it
has been included here to alert the reader to the fact that this term can
appear. In any case, each coordinate and each momentum that appears only in
squared terms in the expression for H contributes (1/2)kT to the average :
energy per molecule at equilibrium. Note that the number of squared terms
does not matter, but the number of independent coordinates involved in these
terms determines the multiple of kT/2 contributed to the average energy.
With this derivation in mind, the principle of equipartition of energy can be
applied in more than just a cookbook fashion.

1.11 DERIVATION OF THERMODYNAMIC PROPERTIES FROM THE PARTITION FUNCTION

From this point on, the total number of molecules n is taken to be
equal to the Avagadro number N, the total free volume accordingly is the
molar volume V and extensive properties are evaluated for 1 mol of gas.

The energy per mol is, according to equation (1.38),

E-—Ee ;e (1.70)

; Note that, ever at absolute zero T, there can be a finite particle energy,

. called the zero point energy ¢€,. For example, this might be the energy
connected with nuclear structure, or dissociation, or 1on1zat1on of the parti-
cles involved. Although rather high temperatures, up to 10° °K, are of inter-
est here, these temperatures are still relatively low for the purpose of
populating even the lowest-lying excited nuclear energy levels. Thus, for
practical purposes, the nuclear energy may be considered a constant over the
temperature range of interest here, and the value zero is conventionally
assigned to this constant. However, dissociation and ionization energy of
certain atoms and ionic particles must be accounted for by absorbing these
cnergies into the zero point energy e¢,. Also, vibrating molecules have a
zero point energy, (1/2)hv, (as discussed in ch. 5). Then equation (1.35)
takes the form

R %%.%W%?} A TRy L 5 AT
~ STy e BRI T R T 5

o Rt 4 LA AAMT U k< s 7 e i

_ -a _-Bey -B(eg-€p)
N=¢e ¢ ?gie o 1.71)

B I sy

and the energy per mol becomes
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E =

N2 (es - eog; e (Eie0)
t + Ne (1.72a) :
Egi o-Bleg-€p) o ",
1 i

If the symbols ¢; are understood to represent the energies measured relative
to the zero point energy e,, then equation (1.72a) takes the same form as . .
equation (1.70) except that the zero point energy per mol Neo or E, is N
included:

N -Be; :
E-E,= 5251:% e PeL (1.72b) ‘
¢ 5
Now if the degeneracies are independent of B, we see by inspection that the i ?
energy can simply be equated to a total differential of In Q: : )
;
E-Ey= -N d—gg—Q (1.73a)

or, in terms of temperature,

E - E, = RT2 é..é;ﬁ (1.73b) ﬂ

where R is the universal gas constant, Nk. Equations (1.73) give the rela-
tion between the energy and the partition function for a solid-phase system of
localized distinguishable particles. However, for the gas phase system of
indistinguishable particles, the degeneracy of the kinetic energv modes is a : :
function of volume, which, in turn, is a function of B and pr sure p. In ’ |
fact, for ideal or dilute gases, where the intermolecular interactions are .
negligible, we found from partial integration of the phase integral, equa- :

tion (1.59), that the partition function is proportional to volume. Thus, the 4
energy of a gas must be equated to a partial derivative of In @ taken at :
constaat volume: )
- 3 In Q) = o2 (a in Q) ; ;
E-Eyp=-N (——SE-—-U = RT ST . (1.74) ¢ :
i ;
The specific heat at constant volume is thus é‘( :
L
R ";‘{»’
< (3EN . 3 |pp2 énlﬂ_Q) ! :
Cy = (BT/U = o7 [ﬁT ( T ), (1.75) ;
i

The entropy may be found by integrating equation (1.75):

Tc¢,dr T ! '
5 v =L 13 |, éﬁlﬁ‘Q) : i ‘
5-35, -J; 7 -j; ¥ 37 [RT( = v] d1 (1.76a) .;
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Equation (1.76a) can be integrated by parts to give

5. - uz_e)f“’ (-2 9) (-4
s -5, =m(572) - ) aTsz)dT

E'Eo i
= T +Rin % (1.76b)

where @, is the partition function at zero temperature or, in other words,
the ground state degeneracy g,. The constant of integration S, is deter-
mined by a comparison between equation (1.76b) and the relation

E-E,

T + R (1.77)

S=R1In % +

which is equivalent to equation (1.49) cxcept that finite zero state energy
Ko 1is included. By inspection, one sees that S, must be

%
Sp =R 1ln ! R (1.78)
and the entropy per mol miy finally be expressed as

S=RT(9—§;‘,-——Q-) +RZn%+R (1.79)

v

Note that it makes no difference whether @ or &/N is used in the ivgarithmic
derivatives, but the ratio Q/N must appear in the second term of equa-

tion (1.79) 1 '..n gas phase is considered. Often the symbcl @ alone is
understood to signify the ratio @/N for the gas phase, but the notation that
shows explicit dependence on N is retained here to call attention to this
later when discussing chemical equilibrium,

At this point, one might ask whetiier entropy satisfies the definition of
an extensive property (i.e., the sum of entropy of the parts of a system
equals the total) in view of the fact that S appears to vary as a nonlinear
function of N, namely, -In N, according to equation (1.79). However, in
chapter 3, the kinetic energy partition function for free particles is found
to be proportional to volume V. Thus, so long as the ratio V/N remains
constanc, the entropies of the parts of a system are additive as required. If,
however, the volume is allowed to change, such as when a partition is removed
between two masses of different gas, the zero point entropy of each gas is
changed by the increase in volume and the resulting charge in entropy is known

as the entropy of mixing.

The free energy F 1is defined as

F-L,=(F-Ep) - 7S = -RT Zn%-RT (1.80)
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and, according to equation (1.9), the pressure is

F 3 InQ
p = (W)T . RT( = )T (1.81)

For the ideal or dilute gas, the particles behave essentially as free parti-
cles, in which case ¢ 1is proportional to V (see eq. (1.59)), so that

(3 o Q)T =1 (ideal gas) (1.82)

p= EVZ (ideal gas) (1.82)

The remaining thermodynamic properties can be ~xpressed in terms of those
given above. Thus, all thermodynamic quantities can be derived from vthe par-
tition function @, which, in turn, is a function of the independent variables
T and V.

Problem 1.4: Show that, if 7 is proportiona to V (i.e., the gas is ideal),

alnq . 3an Y

8T )p ( af )U‘T (1.84)
Show that the enthalpy i<

H - E, = RT2 (———‘23 ;; ) (1.85)

(4

Also show that the entropy of a gas may be expressed as

. 1113) . Pl
s RT( T, Ring (1.86)
and that the free cnthalpy is
G- Ey=-RT In§ (1.7

1.12 GIBBS' DEFINITION OF ENTROPY

The Boltzmann definitions of entropy considered previonsly (eqs. (1.22a)
through (d)) are special cases of a yet more fundamental definition provided
by Gibbs:

$= -k p; np; (1.22e)
J

where p.: is the probability that the system is in the state J and tne
summatioh extends over all possible states. This definition is most oftch
used in information theory (e.g., when the concern is about how much jaformation
can be abstracted from the system rather than how much work). Entropy becomes
a measure of the information content that cannot be abstracted given a certain
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level of noise (i.e., temperature). Incidentally, comparisons between
information theory and thermodynamics immediately suggest the enuivalence
between information and work. Our present concern, however, is to show the
equivalencs between equation (1.22e) and the Roltzmann definition of entropy.

Consider first a system constrained to a given distribution function for
the set of occupation numbers n;. The W ecquivalent states of this system
are assumed to be ejually probable, thus pj = =1 and, for such a system,

=klnW (1.22b)

S L

d 1
S = ‘k}E:'ﬁ in
J=1

which is the relation used in section 1.5.

In a real system, we do not know the occupation numbers n; cxactly
because these values fluctuate because of collisions or other processes; this
lack of precise knowledge means that the entropy of the system is increased so
far as we are concerned. However, if we know the occupation numbers very
closely, as for systems at equilibrium or when we are following in close
detail a chemical relaxation process for example, then we can assign the
entropy rather precisely with equation (1.22b). To be more precise, we know
only that the system maintains constant energy, and we assume that in equilib-
rium all sets of occupation numbers »n; that conserve this total energy are
equally probable. Then pg = @-! and the equilibrium entropy of real systems
is

Zn-%: k In Q (1.22¢)

bl

Q
5=-k 2,
g=1

The increase in entropy k In Q/Wmgy over the approximate equilibrium entropy
k In Wpax 1is a measure of the uncertainty introduced by fluctuations. The

difference between equation (1.22¢) and (1.22b) is somewhat academic since @
is usually equated to Wpg, in numerical evaluation.

Still another definition of entropy is occasionally encountered in the
literature. A system of »n identical particles may be considered as a collec-
tion of n subsystems, each with an identical entropy ~kz:;¢:ln Py where

the summation now extends over all energy states available to the individual
particles. The entropy of the system is then the sum of all # parts of the
system:

Seolid = -nk% Py In Py (1.22f)

Equation (1.22f) is the entropy for a system of distinguishable particles such
as in the solid phase where the particles are localized. For the gas phase, a
factor (~-In n!) is added to account for the fact that n! of the different
states for distinguishable particles corresponds to just one state of the
indistinguishable, quantized gas particles:
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Now, given the distribution function n; for particles in energy levels ¢

which may have degencracy g;» the probability py can be expressed as

2 88 o

T — 1. : ¢

Py ng; ( ) |-

Equation (1.88) makes use of the assumption that the occupation numbers in

degenerate states of the same energy are equal, a relation known to be valid

for the equilibrium state at least. Then

ny ng,
s=k2?’f Zn%-k(n Inn-n) (1.89)
k %

The summation may be performed over the degenerate states to give a summation
over all levels <:

%!
!

1

g.
= ani(Zn n+ in ;1‘-) ~-k(n lnn - n)
1

go
k 2 :"i In Zl + nk (1.90)
7 1

Substituting the value of In W derived from equation (1.45) with Stirling's
approximation

g.
ZnW=Z n. Zn-71—1:-+n (1.91)
7 z

one obtains

et Vel R S Wt gl IR b A & sk e aes

S=kinW (1.22b)

-

which is the same relation defined in section 1.5. Thus we see that the Gibbs !
formulation of entropy is completely equivalent to the Boltzmann formulations !

4
used previously. .
Let us now investigate the order of magnitude of the fluctuation
correction term K In(Q/Wpgx) in equation (1.22d). Let n; be the number of
particles in each ~rergy level < of a gas at equilibrium (hence, W = W,,.):
%
i
Moz = 1] 77 (1.92)
T 1 i

In a small fluctuation from equilibrium, let §; be the number of particles
shifted from level < to adjacent levels, which we assume will have nearly
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the same degeneracy 9; and nearly the same occu_.tion number n:» both of ,
which are very large numbers. The §; values may be either pos1t1ve or nega- *
tive integers and the sum of all §; vamshes The ratio of W, the fluctu- i

h ating value of the thermodynamic probabillty, to MWpgx can then be expressed -
as : ! ;
?‘ . 7 _ _~ 61: n.,;! ‘
*ef' The logarithm of this ratio is, with Stirling's approximation,

= Ing. +1 ] X

i maxz "9 n("'%)

t =2:[61; in g; *+ ng inn; - (ng + Gi)ln(ni + 8;)) (1.94) - A
£ T .
: Expand the logarithms and assume that very few of the numbers in each level o

are shifted (8, << n;):

ng (85 ng (8;\’ (A}
(np+87)In(ng+8;) =n; Inmp+d; Inng+8;+ 5 n) "8 \n; +0n,,;n—i

R I N

(1.95)
- 2 3
W (SN ng (8
in =Z 8§, In --6~Znn---—-(—) +—(—)+... (1.96)
Wmax = [1, 91 - 9% 2 ni 6 \n;

Now since the 9; and n; terms are assumed to be nearly equal between the

adjacent levels where exchanges occur and the sum of all 6; vanishes, the
first two terms of the summation in equation (1 96) are of small order. The
largest term is the quadratic term in (8;/n;)? ;

5.2 -2.61:2/2711:
nt— s ) LA (1.97)
Wmax z ng Wmazx

R T o L A L S

The possible number of states with changes §&; 1in cell % are
designated by Q;

26 2/2n ,
Q; = W dsg = Wy e IFE f e 872 g4y P

Lo
f
. 26 /211(7 i
= Wpgg € IFE VZngm (1.98)
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Now let all §; terms take all possible values independently of one another.
(This actually overestimates the total number of possible states since the §;
are restricted by the fact that the sum of all &+ must vanish.)

Q = 629,; =f. . fwdsg ds;. .=t | 2mp) 'R (1.99)
. 1
J
1
n g — =2;-2—Zn(21m7;) (1.100)
7

This sum is exactly the negative of a sum that was neglected in using
Stirling's approximation for the F Inn;! (see eq. (1.47)). Since the esti-
7

mate of In Q/Wpnqar found above is an upper limit, the approximation
InQ=1In Wmaye 1s indeed valid when the numbers n;, which contribute appre-
ciably to the total thermodynamic probability W, are all very large.

Problem 1.5: Show that, if a pure uniform gas is divided into several parts with the same number density,
Ny/Vi, the sum of the entropy of the parts equals the entropy of the whole: £ S; = S.

Problem 1.6:

Show that, if a collection of gases are mixed with mol fractions x;, the entropy for 1 mcl of
the mixture is

S -

S= 2 xisi R E z; in x;
z [

where 5; 1is the entropy per mole of species <. The positive term (-] x; In x;) is often called the entropy of

mixing. However, it merely represents a correction to the zero point molar entropies to account for the fact

that a mole of pure species % would, at the same density as the gas species %, occupy a larger volume than a
molar volume of the gas mixture.

1.13 QUANTUM STATISTICS

In the statistics of particles considered thus far, each degenerate state
available to the particles was treated as a distinguishable state. The par-
ticles themselves were considered distinguishable in solid phase where they
are fixed at a definite location, and indistinguishable in gas phase where
they are free to occupy any position. In either case, the model led to a
Maxwell-Boltzmann distribution as the most probable; only the entropy

decreased by a constant term -nk(In n - 1) vhen the particles were
indistinguishable.

In quantum statistics, the g; degenerate states of energy cell 7 are
treated as a cyclic array of indistinguishable states and a cyclic array of
g; objects has (g; - 1)! permutations. This corresponds to the different
ways of indexing tﬁe degenerate states. (Note the difference between permu-

tations of cyclical and linear arrays - a linear array of 9; objects has

gi! permutations.)

In addition, two classes of quantum particles exist - fermions and bosons.
These particles are described by wave functions developed later in chapter 3
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and thereafter. Fermions are particles composed of an odd number of
fundamental particles, each having a half-integer unit of angular momentum.
(For purposes of this book, we consider only the following fundamental parti-
cles: protons, neutrons, and electrons.) A collection of fermions is found
to require an asymmetric wave function, with the consequence that two fermions
eannot occupy the same state. Bosons, on the other hand, are particles com-
posed of an even number of fundamental particles, and a collection of bosons
is required to have a symmetric wave function, with the consequence that two
or more bosons can occupy the same state. These consequences follow from the
Pauli exclusion principle and are discussed in .nore detail in chapter 4 in
connection with nuclear spin effects in rotating molecules. For the present,
we are concerned with the statistics obeyed by these two classes of particles.

Fermions are restricted to one particle per state with g; states in
each energy cell. The number of ways n{ 1nd15t1ngu15hab1e partlcles can be
arranged in g; states is g;!/n;!(g; -n;)!. Note that g; > n;. Thus the
total thermodynamic probability is (see appendix 1-A for a derivation)

~ g.!
W= L
LI ni!(gi - ni)!

(1.101)

Now take the logarithm of equation (1.101), add equations (1.31) and
(1.32) with Lagrange multipliers a and B, respectively, and maximize the
result by setting the derivative with respect to n; equal to zero as before.
In this case, the numbers g. and (g - "i)! can often be small and the use of
Stirling's approximation is 5ifficu1t to justify; nevertheless, the same
results are obtained once again as with the more rigorous Darwin-Fowler method.
The Fermi-Dirac distribution function for fermions is found to be

9:

—r (1.102)
B L

ng =

the same form obtained for the Maxwell-Boltzmann distribution except for the
term (+1) added to the exponential function in the denominator.

Any number of bosons can occupy each state and, in this case, the (g- - 1)!
cyclical permutations of the states are indistinguishable as well. This
cyclical permutation is equivalent to a linear permutation of (g; - 1) parti-
tions between states. The total number of ways to permute (n; + g; - 1)
objects in a linear array, when 7n; belong to one class of indistinguishable
objects and g; - 1 to another class of indistinguishable objects, is
(ng; +g; - 1) /nz'(g. - 1)!. Thus, in this case, the thermodynamic probabil-
ity is (again see appendlx 1-A)

~ (ng +g; - 1!

; millgg - DY

(1.103)

Once again, maximizing the sum of In ¥ and equations (1.31) and (1.32) with
Lagrange multipliers o and B, one obtains for the Bose-Einstein distribution
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ng = eq+Bgi -1

(1.104)

the same form obtained for the Maxwell-Boltzmann distribution except for the
term (-1) added to the exponential function in the denominator.

Problem 1.7: Show that if In x! 1s assumed to be equal to (x In x - z), without restriction, the
thermodynamic probabilities of equations (1.101) and (1.103) lead to the most probable distribution functions
(1.102) and (1.104), respectively.

One can see that, so long as the factor e“+8€i is large compared with
unity, the Fermi-Dirac and Bose-Einstein distributions, equations (1.102) and
(1.104), respectively, are practically identical with the Maxwell-Boltzmann
distribution, equation (1.34). This is indeed the case wherever normal gas
temperatures and densities obtain; the differences between these distributions
become apparent only at exceedingly high densities and/or low temperatures (as
shown in ch. 3). One might consider the factors gti/nz. in equation (1.45)

as expresions for the number of ways n; classical gas particles can be
assigned to g. states within a unit band of energy. This number is not
necessarily an integer, but it is bracketed by the comparable integer expres-
sions for the fermion and boson distributions:
ng
g;! g; (n; + g;-1)!

1
n Tz -t gl ngi(gz - DY (1.105)

provided g; > ns- At normal temperatures and densities, g; >> ng, and, in
this case, all these expressions are approximately equal.

1.14 CONCLUDING REMARKS

Statistical mechanics has made three very significant additions to
thermodynamics. First, it permits all thermodynamic quantities to be evalu-
ated from spectroscopic energy level data, which are so precise that the
thermodynamic quantities can be determined accurately whenever spectroscopic
data are available. Second, statistical mechanics establishes the absolute
level of entropy and therefore the level of the free energies relative to the
zero point energy. Finally, entropy is interpreted as a measure of the proba-
bility that the system may be found in the given state. Then, if one accepts
the fundamental postulate of statistical mechanics that all spontaneous pro-
cesses lead toward a more probable state of the system, the reason entropy
increases spontaneously and becomes a maximum at equilibrium becomes apparent.
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APPENDIX 1-A: DERIVATIONS OF THERMODYNAMIC PROBABILITIES

Statistical mechanics is based on mathematical expressions for permuta- ]
tions and combinations of objects. Those expressions used in the derivations i
of statistical distribution functions are reviewed briefly.

Consider first the number of ways to arrange distinguishable particles in - :
order. The first particle can be chosen from any of the »n particles, the . v
second from the (n - 1) remaining, the third from the (n» - 2) remaining, and :
so on until the nth position is filled with the remaining particle. Thus,
the number of different ways to arrange =n distinguishable particles in order
is ’

g T e

RYZIEN

W=nn-1)(n-2) -+ -3*2-:1=mn! (1-A1)

If these n particles are now put into a single level where they are
indistinguishable, all n! of these permutations are the same so far as any .
observable of the system is concerned, and the number of different states of P S
the system reduces to '

In the systems of interest, the particles do not all reside in the same
level, but n; particles are in level 1, n, in level 2, . . ., n; in level
i, and so on. So far as an observable of the system is concerned, the n;! i
possible permutations of the particles in level < 211 yield the same result, ;
so the number of equivalent states of the total system (defined in section 1.6 i
as the thermodynamic probability) is § ;

. ;
St . i
V= T (1-A2) |

!

X —

A crystal lattice is a system for which each particle of the system is ; 3
distinguishable by virtue of its position in the lattice. The above expres- i E
sion can be used for the thermodynamic probability of such a system if each S
energy state is counted separately, even though some of the states may be

degenerate, that is, have the same energy level. In practice, for convenience

of computation, the states with the same energy e, are usually grouped

together and the occupation number n; refers to the total number of par- 5 /’A ;
ticles in all g; states with identical energy. If therc is no restriction : e
on the number of particles that can occupy each state, the first particle of
the group n; can be assigned in_g; ways, the first two can be assigned in
giz ways, the first three in g;° ways, and so on, until all n; particles !
have g'** separate ways in which they can be assigned. The expression for
the thcrmodynamic probability then becomes

e S

~ 9z ! i
We=nt]]—= (1-A3) ; ,

Z : .

[P
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the relation used in the text to obtain the solid phase distribution law and
entropy.

For the gas phase, the particles are free to exchange positions to a good
approximation and the =n! permutations of all possible exchanges are deemed
to result in the same observable state of the total system. Thus, for the gas
phase, the thermodynamic probability is taken to be

P gn'
W= .! L (1-Ad)
1 1

The models above describe systems fur which the particles are distinguish-
able in principle, but subsequently allow exchanges of particles in position
or energy state so that the observable state of the total system is unchanged.
These models adequately describe systems of particles that have essentially a
continuous spectrum of energy and position and a particle density small com-
pared with its density of degenerate states - in other words, a system of
classical particles.

At low temperatues or high densities, the quantum nature of the particles
must be considered, in which case the statistics of fundamentally indistin-
guishable particles must be treated more rigorously. Quantum particles are of
two types, fermions and bosons. Consider first a system of fermions. Of the
g; states available with the same energy e;, n; of these are occupied with
a single particle each and the (g; - n;) remaining are empty. The empty
states are considered indistinguishable and the filled states are also con-
sidered indistinguishable, but the filled states are considered distinguish-
able from the unfilled states since the particles and states are different
things. Of the g;! different ways to permute the total number of states,
the n;! different ways to permute the filled states and the (g; - n;)! dif-
ferent ways to permute the unfilled states are considered to result in the
same observable or equivalent state of the total system. Thus the number of
ways n; indistinguishable particles can be assigned to g; states of equal
energy with no more than one particle per state is

g;°
nytlgy - ng)!

W; =

Then the total number of equivalent ways all n fermions can be assigned the
occupation numbers n; is the product of all W;:

~ o~ g.:!
W= , W. = II ke

;T s onit(gy - ng)! (1-45)

the thermodynamic probability used for a gas system of fermions.

For a gas system of bosons, any numb2r of particles can occupy any one of
the degenerate energy states. The total number of ways n; objects can be
divided by g; - 1 partitions (which group the objects into g; different
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states) is the total number of permutations of n; and g; - 1 things, taken
together, that is, (n; + g; - 1)!. But the n;! rearrangements of the indis-
tinguishable particles and the (g; - 1)! rearrangements of the partitions all
lead to the same observable state, so the number of different assignments
available to the n; particles in the g; states, with no restriction on the
number of particles per state, is

o (n; +g; - D!
1% Tngtg; - D!

The total number of equivalent ways all »n bosons can be assigned the
occupation numbers n; is again the product of all W;:

~ ("7:"9.,: - D!
W= L‘I W,,;=U T, T (1-A6)

the thermodynamic probability used for a gaseous system of bosons.
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CHAPTER 2 - CHEMICAL EQUILIBRIUM

2.1 SUMMARY

‘The entropy of a gas system with the number of particles subject to
external control is maximized to derive relations between the thermodynamic
variables that obtain at equilibrium. These relations are described in terms
of the chemical potential, defined as equivalent partial derivatives of
entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the
change in total chemical potential must vanish. This fact is used to derive
the equilibrium constants for chemical reactions in terms of the partition
functions of the species involved in the reaction. Thus the equilibrium con-
stants can be determined accurately, just as other thermodynamic properties,
from a knowledge ot the energy levels and degeneracies for the gas speries
involved. These equilibrium constants permit one to calculate the equilibrium
concentrations or partial pressures of chemically reacting species that occur
in gas mixtures at any given condition of pressure and temperature or volume
and temperature.

2.2 INTRODUCTION

According to the fundamental postulate of Statistical Mechanics formu-
lated in chapter 1, the equilibrium state of a system is the most probable one
consistent with the constraints imposed on the system. Since entropy
increases with probability, the equilibrium state is alternatively described
as that state to which spontaneous processes lead, resulting in a maximum in
entropy. The word spontaneous is somewhat ambiguous in this statement; usu-
ally, it means that the irreversible process leading from a nonequilibrium
state to the equilibrium state is allowed to proceed undisturbed in a system
kept at constant energy and volume or at constant enthalpy and pressure. One
should not infer that all irreversible processes leading to equilibrium must
increase entropy; it is perfectly feasible to devise such a process in which
the entropy of the internal system is decreased merely by subtracting heat or
work from the system, for example.

Generally, as a closed system (..c., a system with zero mass addition or
subtraction) approaches the equilibrium state by some arbitrary irreversible
path (which may include heat addition or subtraction), a typical inequality
that obtains, according to the results in chapter 1, is

dE + pdV - TdS <0 (2.1a)
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One can see immediately that if the system is consctrained to constant £ and
constzat V (i.e., the system is isolated from its surroundings), then the
incremental changes of entropy aS that occur in the system during the irre-
versible process are always greater than zero since 7T 1is a positive quantity.
Thus, if E and V are kept constant, the entropy is maximized as the system
irreversibly approaches equilibrium. Similarly, if S and V are kept con-
stant, the increments in energy dE are always negative, and the energy is
then minimized at equilibrium.

To illustrate how entropy of 2 closed system can also decrease in an
irreversible process leading co equilibrium, we can relax the requirement that
encrgy be kept constant, but keep the volume constant as before. Figure 2.1
depicts the path of several such pro-
cesses with paths along a constant
volume plane in energy, entropy, and
volume space. One equilibrium condi-
tion is represented by the point 0
in this plane; the locus of all equi-
librium points at constant volume
forms the equilibrium state line 0'0"
in the constunt volume E,S plane;
this iine is the intersection of the
E,5 plane with the equilibrium sur-
T .ce, defined by thc ecquilibrium
function E(S,V) in three-dimensionat
E,5, and V space.

Away from the equilibrium sur-
face, at least three variables are
required to define the state of the
system; only three are required if
only one degree of freedom of the sys-
tem is out of equilibrium and one
Figure 2.1.- Relations between energy additional variable is required for

E and entropy S 1in irreversible each additional degree of freedom out
approaches to cquilibrium point 0 of equilibrium. However, in an infin-
at constant volume V., ttesimal reqion next to the equilib-
rium surface, the state of the systenm
can be defined by only two independent variables. In the present case, volume
and entropy are chnsen as the independent variablcs and the systems are con-
strained t2 a fixed volume. (A fixed volume is a simple constraint to i.apose
experimentaily, of course, though this is not essential to the argument.)
Thus, in a region very near the equilibrium line along 8 constant volume path,

eq
e R = (Y 45 (123
E=E(S,V), dr = (as)v as, (as)v 7 (2.1b)

For an arbitrary nonequilibrium path approaching the equilibrium region at the
point 0 (fig. 2.1),

dE - 75 dS <0 (2.1¢)
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where T, is the equilibrium temperature at point 0. Thus, if the path
opproaches point O from lower values of entropy (path A0), the slope of the
path must be less than T,, whereas if the path approaches point 0 from
higher values of entropy (path B0), the slope of the path must be greater
than T,. This weans that the part of the E,S5 plane below and to the right
of the constant slope line (aE/BS)V = Tp, through the point (¢ is inaccessi-
ble to the system. The equilibrium state at point O can be approached only
from the region above and to the left of this line. If both E and V are
kept corstant, the process approaches equilibrium along line C(C and the
entropy is maximized at equilibrium. If S and V are kept constant, the pro-
cess approaches equilibrium along line DO and the energy is minimized at
equilibrium. These nonequilibrium process paths are irreversible paths.

The same situation holds at any point along the equilibrium line, of
course. The slope of any arbitrary iiieversible process path approaching the
equilibrium line is related to the slope of that line at the point of approach

by the inequality
noneq e
dE JF
[(as)v " (as)vq]Oig <0 (2.1d)

As the equilibrium line is approached from a lower value of entropy (dS > 0),
the siope of the path an infinitesimal distance away from the equilibrium
point must be less than the slope of the equilibrium line at that point:

noneq aE)eq

(-g-g)v i (35 (2.2a)

On the other hand, if the equilibrium point is approached from a higher value
of entropy (dS < 0), the reverse inequality holds:

noneq eq
(35) > 3—E) (2.2b)
35 v ds<o \35/y

In other words, the curvature (azE/332)$9neq for any irre rersible constant
volume process path near an equilibrium point must be positive:

aZE)"O"eq 1 [aE °q (aE
it} =lim = (&) -{(Z)]|>0 (2.2¢)
(as2 v pg»0 DS (as)v as)V

In problem 2.1, the reader is asked to deduce that the curvature of the
equilibrium line (323/352)39 is also positive.

Problem 2.1: Consider ¢ nonequilibrium state described by three variables, nar-ly, V, S, and T. Note that
S and T are defined by a nonequilibrium distribution function as in chapter 1. For a segment of the process
path not at the equilibrium point, the energy is expressed as

E=EW, S5 T (2.3a)
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at equilibrium,

(:—i-):y =0 ‘ (2.3b)

2p\89
(3_’;:) >0 (2.3¢)
o7 S,V

so that energy is minimized at equilibrium for any process path occurring at constant S and V. ¢

The same type of reasoning can be applied using other sets of thermo-
dynamic variables to show that entropy is maximized by any process occurring
at constant K and p, for example, or that enthalpy is minimized by any pro- !
cess occurring at constant S and p. The most useful relations of this type '
involve the free energies. The Helmholtz free energy F is minimized at equi- ‘
librium for systems maintained at constant T and V, and the Gibbs free energy
G is minimized at equilibrium for systems maintained at constant T and p (as
the reader is asked to show in problem 2.2).

.

i
U W

x ) Problem 2.2: Show that the Helmholtz free energy F is minumized by an irreversible process occurring at
8 : constant V and T, which leads to equilibrium, and that 7 is minimized bg an irreversible process occurring at

g . constant F and ¥, which leads to equilibrium. Show that the curvature (3 ’/aTz)V for any process path in a '
constant volume F, T plane is positive at the equilibrium point. Sketch a curve of irreversible process paths

on the F, T plane about the equilibrium poirt and show the regicn of this plane which is inaccessible to real

systems. Deduce similar relations for the Gibbs free energy.

S e

2.3 THERMODYNAMIC RELATIONS IN OPEN-SYSTEM GAS MIXTURES

In the previous chapter, closed systems composed of a single pure gas
with constant number of particles were considered. Now, a system composed of
_ a mixture of gases is treated and, for the moment, the number of particles is :
: ‘ left open to external control. Then the thermodynamic properties all become i
) functions of the number n; of each species involved, as well as of two other
independent thermodynamic variables. Let the entropy take the form i

= S(E,V,ny,np, . . .) (2.4)
Then the differential of entropy is 5

5@ @ TG, w0

v, n

E

The two partial derivatives of entropy with fixed numbers n; are the same as
though the system were closed, with a fixed number of particles. Then, accord-
ing to the results found in the last chapter for such systems, equations (1.3) . .
and (1.11), :

05 4
= = (2.6)

(2
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A quantity EZ, the chemical potential per molecule, is defined as

g = _T(as) (2.8)
an.
1 E’,V,nj#i

where all n; except n; are maintained constant. The chemical potential
u; divided by the temperature is just the negative change in entropy created
when one molecule of species % 1is added to the gas mixture at fixed energy
and volume. The symbol u is reserved for the total chemical potential per
mol and u; designates the chemical potential per mol of species i, or Nu;.

Equation (2.5) can now be expressed as
dE pdv 1 —
=B 2w dn (2.9)

If entropy is to be a maximum (dS = 0) in systems kept at constant E and V,
the change in total chemical potential must vanish:

bu= 2 WS dn. =0 (2.10)
7

Equation (2.10) is very important because it is the general condition for

thermodynamic equilibriuwn. This relation holds for both open and closed sys-
tems. Note that a closed system is merely a special type of open system for
which every particle abstracted is re-introduced, perhaps as another species.

If energy is taken to be the dependent variable, equation (2.9) is
conveniently rearranged in the form

dE’=-pdV+TdS+§uidni (2.11)
But energy can also be considered a function of the variables V, S, and ng,
E = E(V,S,nl,nz, . . .) (2.12)
so that the derivative of energy is
dE = (§~E— av + a—E-) ds + (35—) dn; (2.13)
S,

av Sang 3s Vyng ) \on; Vons

The partial derivatives with constant n; are again the values for a closed
system with a fixed number of particles found in equation (1.9) ard (1.11):

47

L P EAREL BRI S W S itis S et
.

e i it

Grpltr -
P02 PRIEN



- A

%

L

g o B

e 3,

bl

Wy * ' “ia
LARN . R :’:_,“ - s A 'F'V\‘/
i Y ——— .
oF
(W) = -p (2.14)
S,ng
3E)
=7 =T (2.15)
(33 Vyng
so that equation (2.13) becomes
- - 9E
dZ = -pdv+Tds +Z (3"1:)5 dn; (2.16)

,V,nj

Now one can see by comparison of equation (2.16) with (2.11) that an alterna-
tive definition of the chemical potential per molecule is

—7=(£
T ng

)s , (2.17)

7.

dJ

which is the change in energy created when just one molecule of species % is
added to the gas mirxture at fixed entropy and volume. The derivation of addi-

tional thermodynamic relations of interest is left to the reader as
problem 2.3.

Problem 2.3: Show that for a mixture of gases in an open systenm.

di = Vdp+TdSe Fur dny (2.18)
i
dF = -p dV - S dI + 207 dns (2.19)
<
d6 = vdp - Sdr e X dng (2.20)
i
and that the chemical potential ,T may be defined by any one of the partial derivatives:
T, @), B, ()
L E,V,r.'_ “ .E,V,nJ. 4 S,p,nJ. t T,V,nj T T,p,nj

b

Many authors make a point of classifying chemical potential as one of the
intensive thermodynamic variables since W; is a derivative of one extensive
quantity with respect to another extensive quantity, which obviously depends
only on the gas mixture involved and not on the total amount of mixture con-
tained in the system. In this sense, all specific thermodynamic variables
measured with respect to a unit quantity of gas, such as energy per molecule
or energy per mol, are intensive properties. Like W7, they are derivatives
or ratios of two extensive quantities. However, a total chemical potential
can be defined for the system which is the sum of all chemical potentials of
the parts of the system; this total chemical potential is an extensive quan-
tity just as total energy, total enthalpy, total free energy, or total free
enthalpy. This group of properties clearly belongs to a different class than
the inherently intensive properties such as pressure, temperature, and density.
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2.4 CLOSED-SYSTEM GAS MIXTURES WITH CHEMICAL REACTION

Now we return to the problem of a gas mixture in a closed system, that is,
with no particles added or subtracted from the external environment, but where
the numbers of the gas particles can change due to chemical reaction:

PILEE =§ka,¢ (2.22)
J ¢

The reactant species are designated by Aj and the product species by By,
and the corresponding stoichiometric coefficients of the reaction are a; and
by, respectively. These are the molecule numbers (or the mol numbers) which
balance the equation.

The forward ri.te of reaction (2.22) can be expressed in terms of the
partial pressures of the reactants and the forward rate coefficient @f

< 2. 1 a5
Rp = ke |J_| ®;) (2.23)

and the reverse rate in terms of the partial pressures of the products and the

reverse rate coefficient kr

b

it k (2.24)

Rp = ky || (Py)

T

At equilibrium, these rates must be equal and the ratio of the forward and
reverse rate coefficients at equilibrium is, by definition, the equilibrium

constant K?: 17. by
ke (Pg)
K = = ~————— (2.25)
P ke T o™
J

The equilibrium constant is really a function of temperature, but it is
called a constant to focus attention on the concept that it is independent of
pressure or any other thermodynamic variable except temperature, at least
under ideal conditions. Historically, the term arose because rate experiments
vere conveniently made under constant temperature conditions.

e, which may

The rates can also be expressed in terms of concentrations
/v,

be expressed in molecules per unit volume n/v, or mols per unit volume
or mass per unit volume M/V, for example. (Mols per unit volume are the
units used here.) The equilibrium constant X, is defined similar to the

above: .
k
e (2.26)
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For dilute or ideal gas species, ¢ = p/iT and the two equilibrium constants

are then related by

%

&Nk, (2.27) /

where An is the change in the number of moiecules of the system per
molecular reaction: i'

=2 by- 2 a; (2.28)
k i’

- The equilibrium constants Kp and X, are now derived in terms of the

‘ partition functions of the chemical species involved in the reaction. At equi-
E librium, the change in total chemical potential must vanish. The changes in
different species numbers dn; are related by the chemical reaction (2.22)
according to

- X (2.29)
é aj bk
% -
P where di 1is a common factor of proportionality. Thus equation (2.10) ;
é becomes : :
-~ Bu =§I,: dn; = dx (; auj -}%‘bﬁi) =0 (2.30)

or, in other words, the decrease in chemical potential caused by the disappear-
: ance of the reactant species must just balance the increase in chemical poten-
tial resulting from the appearance of product species:

PR N

JZaju_j =Zk:bku_k' (2.31)

The chemical pctentials may be evaluated in principle from any one of the
partial derivatives listed in equation (2.21). In practice, derivatives of
the free energy or the free enthalpy are most convenient to evaluate. The
free enthalpy for n particles may be expressed, .:ing the definition of :
enthalpy and equation (1.77) for entropy, as ) C oy

l‘z

G=H-TS

Q 8-80
nso+n(e-eo)+pV-T[nk an+n( 7 )+nk

ne, + oV -kt + 1n 2) (2.32)

(4

where the total number of particles has been left as n, rather than the con-
stant Avagadro number, N, to call attention to the fact that this is the
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variable of differentiation and, accordingly, V is taken as the total volume
rather than the molar volume V. Then the chemical potential per molecule is /

U= (%)p,T =e,+p (g—:)p - kT(l + In %) - nkT[L;-;ﬁ)T(g—Z)p -%] (2.33)

Note that the ideal gas assumption has not been invoked here, so the results ‘ ;
above are general. However, from equation (1.81),

3 In Q) _p .o

v Jp T wkT (2.34) :

so that equation (2.33) becomes :
T - Q

U =€, - Kkl lIn n (2.35) 3

If free energy is chosen as the starting point, exactly the same results
follow:

"y
"

ne, - nkT(l + In %) (2.36)

= (%S)V p ~Fo- kT(l + In -2—) - nkT(- %

e - k7 In (2.37)

PN L R

=|

Note that @/n 1is the quantity that keeps appearing in the thermodynamic

relations for gases. Often the tacit assumption is made that this is the

quantity meant when one speaks of the partition_function for gases. However,

the ratio @/n 1is defined here as the symbol &: ‘

e e L
SR U T

segergen

Q = Q/n ' (2.38)

X ey

as a reminder that this quantity is the partition function of the species s
divided by the number of molecules of the species contained in the gas systenm. .
Normally, we consider one mol of particles at a time, for which »n=N. Also,

focusing attention on the chemical potential per molecule ¥ emphasizes the

! idea that this potential is a derivative or, in other words, a ratio taken at

i the limit where the changes are vanishingly small. (The system is perturbed

! hardly at all by the addition of a single molecule.) However, in practice,

one customarily works with the chemical potential per mole. Since the .
potential is clearly an additive quantity, this potential is simply ',

p=N =EO-RTzn§ (2.39)
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Whether u or ¥ is used in the equilibrium relations in equation (2.10) or
(2.31) is immaierial in any case.

The partition functions may be expressed as functions of V and T or of
p and T as desired. We now wish to relate @ to some arbitrary reference
level or standard state where the volume is V,. This is easy for the very
dilute gas since & 1is simply proportional to V (eq. (1.59)). Then

Vv
ZnQ-Zch+ZnVO

(2.40)
where @, is the partition function at the standard state with molar volume
equal to V,. In terms of concentrations ec¢ = 1/V (mols per unit volume)or
similar units, equation (2.40) becomes

In@=1InQ, - In é%

(2.41)
where e, is now a reference concentration that defines the standard state.
Since the ideal gas law pV = RT is obeyed for this case, equation (2.40) may
also be expressed as

InqQ=1ngq, - In 2 (2.42)

Po

and, in this case, p
The concept of a standard state is introduced because the standard state par-
tition functions @, and &, can be treated as purely functions of temperature,
and the variation of @ with concentration or pressure is accounted for in
the separable term. For dilute or ideal gases, the concentration standardized
partition function is

-9._p9
% =7 RT (2.43)
while the pressure standardized partition function is
@ = pa (2.44)

Substituting the chemical potentials given by equation (2.39) into (2.31)
yields the equilibrium condition

. [T Px
2o g, k% (2.45)
R 59

J J

where AE is the change in zero point energy when the aj mols of reactants

form the b3 mols of products:
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AE, = EbkEok - 2L ajik,, (2.46)
k J J

In other words, AE_ may be considered the heat of reaction extrapolated to
zero temperature. In terms of the pressure standardized partition functions
Qb (see eq. (2.42)), equation (2.45) becomes

mg: W(‘l)b"

AE “p p
RTO 'T ko - In k—po—a— (2.47)
y QPJ TT(—J-) J
i \Po

Introducing the definition of the equilibrium constant K (eq. (2.25)) into
the last term of equation (2.47) yields

AE Wﬁbk
In (%) a2 & _5;‘ (2.48)
P, X

Normally, the standard state pressure is taken as unity (e.g., 1 atm) so that
equation (2.48) is often written without the dimensional term p; &n.  However,

including it here reminds us that Kb is a dimensional quantity whenever An
is different than zero.

Similarly, the equilibrium constant KX, can be related to the concentra-

tion standardized partition functions ¢,. From equations (2.41) and (2.45),

e, g T

o= n K g KO0 (2.49)
T 79 ~ (%) 7
X e/ l-l (E‘ol)
d J

Again, introducing the definition of KX, (eq. (2.26)) into the last term of
equation (2.49) yields

~ b
[] 3,5
n Lo I . (2.50)
A RT fﬂ'aag .
(o] c.
i J

Once again, the standard condition ¢, is normally taken as unity (e.g.,

1 mol/liter) so that equation (2.50) is often written without the dimension

n
term cg.

Problem 2.4: Use equations (2.48) and (2.50) to verify the relation Kp = (RT)‘MA(..
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We should mention that the equilibrium condition is often analyzed by
equating the chumical potential to the free enthalpy. This is indeed true for
ideal gases, the case treated here. From equations (2.32) and (2.39), one can
see that for 7 molar quantity of gas (n = V),

w=G=E,-RTInQ (2.51)

Then the eqiilibrium condition requires that the summation AG should vanish

AG = )k: byGy, - Z aG; = 0 (2.52)
dJ

which leads to exactly the same rcsults as above. However, equation (?.51) is
satisfied only for the particular v2lue of reference entropy given by equa-
tion (1.78) (in accord with the statistical definition of entropy S=%k In W),
and, for another choice of zero point en.rnpy, the sum AG will no longer
vanish if the number of product molecules is aifferent than the number of
reactant molecules from which they are formed (A» # C) In fact, even with
the zero point entropy given by equation (1.78), the Helmncltz free energy F
cannot generally be used as a direct replacement for the chemical potential u
for constant volume processes. For a chemical reaction at constant volume and
temperature, the sum

AF =§bka - ZagF; (2.53)

vanishes only if 4An = 0. These difficulties are avoided, however, when the
chemical potential is treated as a derivative of G or F, as it should be.
Then the results are independent of the zero point entropy.

Problem 2.5: show that 1t the cero pornt entropy 1s shifted by a4 constant S*  different than zero, that is,
N S
the chemical potential 1s still given by the same function of 2
- - My
Furthermore, show that the sum 5. {eq  (2.523) as then different than zero 3 An as different than zevro, and
that the sum AF  (¢q. (2.331) vanishes tor the same case only af = o/

2.5 CONCLUDING REMARKS

The curvature of the equilibrium surface in a three-coordinate thermo-
dynamic variable space (such .s energy, volume, and entropy) can be deduced
from the first and second laws of thermodynamics. From this curvature, one
can predict maximum and minimum relations that occur at equilibrium, such as
the fact that entropy is maximized at equilibrium in any system kept at con-
stant volume and energy, for example. An irreversible process need not always
lead to an increase in entropy; indeed, spontaneous processes isolated from
external influence do lead to an entropy maximum at equilibrium, but an
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irreversible path that decreases the entropy of a system can be arranged by
suitable interaction with an external system. The only requirement is that
the total entropy of both the system of interest and the external system must
increase.

The equilibrium condition is given in terms of the chemical potential,
which can be expressed in completely equivalent ways as partial derivatives of
entropy, energy, enthalpy, free energy, or free cnthalpy. Physically, the
chemical potential per molecule represents quantities such as the increase in
free energy when a single molecule is added to a system at fixed temperature
and volume, or the increase in free enthalpy when a single molecule is added
to a system at fixed temperature and pressure, for example.

At equilibrium, chemically reacting species exist in the proper ratio to
balance the forward and reverse rates of reaction, which means that the change
in chemical potential caused by the reaction vanishes. This relation has been
used to express the chemical equilibrium constants (i.e., the ratio of the
forward and reverse rate coefficients) in terms of the partition functions of
the species involved, once again illustrating that any thermodynamic property
of a system may be deduced from these partition functions. Sometimes the
chemical potential is equated to the Gibbs free enthalpy in such derivations,
which leads to the same result as when the chemical potential is taken to be
the change in free enthalpy per molecule taken at constant pressure and tem-
perature, because of the particular choice of zero entropy required in statis-
tical mechanics. However, the concept that the free enthalpy is the chemical
potential is basically misleading. The chemical potential is expressed
equaily well as the change in frec energy per molecule taken at constant vol-
vine and temperature, but the chemical potential cannot be equated to free
energy because the incorrect result is then obtained for chemical equilibrium
whenever the reaction causes a change in the total number of molecules.
Fundamentally, this situation occurs because the energy involved in the prod-
uct of pressure and volume is not accounted for in free energy whereas it is a
part of the free enthalpy. However, these conceptual difficulties are avoidzd
when the chemical potential is merely treated as any one of the equivalent
partial derivatives derived from the first and second law.
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CHAPTER 3 - QUANTUM PRINCIPLES AND FREE PARTICLES

3.1 SUMMARY

g

The quantum principles that establish the energy levels and degeneracies
neec :d to evaluate the partition functions are explored. The uncertainty
principle is associated with the dual wave-particle nature of the model used
to describe quantized gas particles. The Schroedinger wave equation is pre-
sented as a generalization of Maxwell's wave equation; the former applies to
all particles while the Maxwell equation applies to the special case of photon
particles. The size of the quantum cell in phase space and the representation
of momentum as a space derivative operator follow from the uncertainty prin-
ciple. A consequence of this is that steady-state problems that are space-
time dependent for the classical model become only space dependent for the
¥ quantum model and are often easier to solve. The partition ifunction is
: derived for quantized free particles and, at normal conditions, the result is

the same as that given by the classical phase integral The quantum correc-
tions that occur at very low temperatures or high densities are derived.
F These corrections for the Einstein-Bose gas qualitatively describe the con-
densation effects that occur in liquid helium, but are unimportant for most
\ practical purnoses otherwise. However, the corrections for the Fermi-Dirac
gas are important because they quantitatively describe the behavior of high-
density conduction electron gases in metals and explain the zero point energy
and low specific heat exhibited in this case.

R
¥

3.2 INTRODUCTION

In the preceding two chapters, all the thermodynamic properties of gases,
including the chemical equilibrium constants, were related to the partition
functions. We now consider some of the quantum principles that establish the
energy levels e and the degeneracies g; of atoms and molecules in gas
phase - quantities needed to determine the partition functions. Strictly
speakiny, the energy levels are always quantized and the partition function is
a sum over these levels. However, when the spacing batween levels is small
compared with kT, the classical phase integra! will prove to be a useful
approximation to the partition function since the integral is often easier to
perform than the sum. The engineer who works on problems involving atomic and
molecular properties needs some insight into quantum principles, primarily to

, give him the judgment to understand when classical methods can be used and
' when quantum methods must be invoked. The uncertainty principle of quantum
mecharics is fuandamenial to this question,

57

PRECEDIONG PACE ..ol NOL ity

-t g™

. g Il G R poasiopen #7714 '\\‘r" . . ) T e s S Seodabedibain \_



P T
%
i

3.3 UNCERTAINTY PRINCIPLE

The uncertainty principle can be related to the properties of the quantum
mechanical wave functions (refs. 1 and 2) which describe the behavior of par-
ticles. Thesc functions are just solutions to Schroedinger's equation, a
famous equation often taken as the starting point or fundamental postulate
(ref. 3) of quantum mechanics. However, we are apt to be staggered by the
leap of intuition that would instantly postulate a complete second-order pdar-
tial differential equztion as the starting point for a description of the
physical universe if we are not aware that Schroedinger discovered his equa-
tion by making some relatively simple modifications of the Hamilton-Jacobi
equations that govern the motion of particles under the constraint of least
action. Schroedinger's genius permitte’ Lim to realize that the time coordi-
nate could proficably be treated as an imaginary variable; the Schroedinger
equation was the result. Although this was the historical process of dis-
covery, with hindsight, we can use a s.mple analogy to Maxwell's electromag-
netic wave equations (ref. 4) that makes Schroedinger's result very nlausitle,
particularly to engineers since they are so familiar with Maxwell's equatiors
and their exceedingly successful applications in electrical engineering.

Experimentally, the fact has been repeatedly established (first by
Davisson and Germer for electrons, e.g., see ref.1) that moving particles
possess the characteristics of waves. DeBrogli~ postulated that all particles
behave something like photons (refs. 2 and 5) which are '"wave particles' known to
have a momentum p equal to their energy kv divided by their velocity c:

hv h
p=2:l (3.1)

where h is the Planck constant, v 1is the frequency and X is the wave-
length. Furthermore, photons are known to obey Maxwell's equation

VYoo (3.2)

where Y 1is the amplitude of the photon wave. By analogy, other particles
can be expected to obey the same equation but with a different velocity of
nropagation, namely, hv/p or vi:

2 2
yow = P __3 ¥ (3.3)
h2v2 3t?
A steady state, o1 standing wave, is rormed when the space and time

dependence are separable:

+ioTvt .
Y = y(xr,y,3)e v (3.4)

The product ¥¥* is then independent of ¢, corresponding to the standing
wave. The spatially Jdependent part of the wave function obeys the

Kh)
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differential equation:

p2y = - AT P° 2y (3.5)

The momentum squared, p2, may be replaced with its equivalent 2m(E - U), where
E 1is the total energy, U is the potential, and m is the particle mass.
Then

2
2y = - i;;—zﬂ & - Vv (3.6)

which is the usual time-independent Schroedinger equation.

In Maxwell's equation, y? is interpreted as a factor proportional to the
energy density of the ave (such as the square of the electric vector E? or
of the magnetic vector n<) (ref. 4), which is proportional to the photon
density. In the Schroedinger equation, y2 is interpreted as a probability
(refs. 3 and 5), which is also proportional to particle density. For example,
the probability that the particle will be in the volume element dr is
defined as

- bu* dr 3
P Tow o (3.7)

where ]’ww* dt 1is a definite integral over all values of the coordinates
involved and represents a normalization constant.

The uncertainty principle may be demonstrated from the wave function
describing a free partic': (i.e., a particle with constant momentum). If such
a particle is moving in the x direction with momentum p,» a solution to
equation (3.5) is

v = e Fo® (3.8)

where the wave number ko is 2n/A0 or 2mp,/h. According to equation (3.4),
the total time-dependent wave function may be expressed as

eiko(x-xb)

Y¥=¢ (3.93

where x, is p,t/m. This function represents a plane wave traveling in the
z directior with velocity p,/m. However, it seems impossible to relinquish
the idea that the object still retains some characteristics of a particle;
that is, it should be localized in space. For example, if the probability is
unity that the particle is somewhere in the interval Ax abov. x., then

xO+Ax/2
f W* de = €2 Ax = 1 (3.10)
xo—Ax/z
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Thus the amplitude must vanish (C = 0) if the particle is not localized

(Ax = ). For Ax finite, a spectrum of wave numbers exists which is given
by a Fourier analysis of the localized wave packet. The wave function may be
expressed as the Fourier integral:

172 © .
v = () f s (e (3.113

where the variable x now signifies the distance (x - x,) and ¢(k) is the
amplitude of the wave number spectrum:

o) = (Eln—>1/2

Thus, for the truncated wave packet,

f v(x)e g (3.12)

1 1/2 PAx/2 eix(ko-k)
o(k) = (2—") ———dx =
-Ax/2 Vix

The intensity of the packet in the wave number interval dk about k is

$2(k):

(_2_)1/2 sin(k, - k)bx/2

T AL ko - k (3.13)

) ) )
4)2 (k)dk = 2 Sun (kO k) (Ax/2)
m

3.14
Ax (ko _ k)Z ( )

If the effective width of the packct in k& space is defined as the width of a
square pulse Ak with the maximum height ¢,° (i.e., Ax/27) which has the
same integrated intensity as given by equation (3.14), then

Ak A fw 2 sin?(k, - k) (0x/2)

—_— = = 3.15
2m e T Ax(k - k0)2 ( )

The wave number %k 1is just 2mp/h and Ak is 2m Ap/h. Thus,
Ap wx = h (3.16)

the familiar relation for the size of a quantized cell in momentum-position
space, which was used in chapter 1 to make the classical phase integral dimen-
sionless. Of course, the definition of the effective width of a nonrectangu-
lar pulse is somewhat arbitrary, but any reasonablc definition leads to a
relation similar to equation (3.16), where the product of the uncertainty in
momentum and position is the order of Planck's constant. This is a general
result for any wave packet having a smoothly varying pulse shape.

Problem 3.1: Show that the following normal.:ed wave packet with a Gaussian envelope

2 7

9
-4, 14
Z.‘C,H'.Y p“nx

y o= e

where o 15 the stardard deviation of the probabiiity wy*, leads to a Gaussian distribution in the intensity of
the wave number spectrum. Furthermore, show that the same rclation as equation (3.16) 1s obtained if the effec-
tive pulse widths arc defined as )y7 times the standard deviations of the Gaussiin distributions for y2 and ¢2.
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Our purpose here is not to refine the mathematical description of the
uncertainty principle, but to emphasize that the principle comes about in a
natural way as a consequence of trying to impose a dual nature on the
"particle wave." One might consider discarding both the wave and particle
model and attempt to construct an atomic theory that permits exact determina-
tion of all quantities appearing in it. Rice and Teller (ref. 6) point out
that even though this might be possible in principle, since the mathematics of
quantum mechanics is complete and free from contradictions, the theory would
start from concepts having no immediate equivalent in everyday experience and
one would run into all the difficulties in explaining the meaning of such an
abstract theory that were avoided in formulating it. In addition, such a
theory would doubtless fail to emphasize an important part of quantum mechan-
ics known as the correcpondence principlz - that for certain limiting cases
the laws of quantum theory converge on the laws of classical mechanics.

A distinction should be made between quantum transitions and classical
processes. The quantum transition takes place between two different states
with different physical properties. The classical process is associated with
only one set of physical conditions and thus describes the situation when the
change in physical properties between the initial and final states is negli-

gibly small. Often this is the case in the limit of very high quantum numbers.

In gases, the change in internal energy produced by collision must be small
compared with the average energy per molecule, generally the order of k., for
classical methods to apply. The laws of quantum mechanics are a finished
formalism, but the correspondence principle is useful in addition to its value
as a limiting case because it helps to visualize and understand laws that are
otherwise predominantly mathematical formalisms. Finally, Rice and Teller
(ref. 6) conclude that any attempt to divorce quantum theory from the classi-
czl picture of particles and waves would destroy the .ignificance of tne
correspondence principle and thus lead into a field where one is not allowed
to use words that are used to express our everyday thinking and experience.
They do not believe that a theory is possible which in its final analysis is
not based on these words and therefore on classical physics and common sense.
Bridgman (ref. 7) often expressed similar ideas.

One important consequence of the uncertainty principle is that a dynamic,
steady-state process analyzed in terms of both space and time coordinates in
classical mechanics can be transformed into a purely space-dependent problem
in quantum mechanics. The latter is often easier to solve because the time
parameter is missing since the time dependence is associated with the momentum
coordinates of the system, which are represented in quantum mechanics by
purely space-dependent derivative operators. To develop this relation (ref.1),
consider the Fourier integral representations of the wave function ¢ (x) and
the wave number amplitude function ¢(k) of a particle constrained to one-
dimensional linear motion along the & coordinate, equations (3.11) and
(3.12), respectively. The momentum of the particle is H#k and the average
value of momentum is given by

pp =k § 7 orke dk (3.17a)
61

REPRODUCIBILITY OF THF
ORIGINAL PAC 13 POGL

e aa b mian,

K\

oty e



— e

- '
o R S RGO .

g

t

PR . L\ T,

X
'

Substituting the Fourier integral of equation (3.12) for ¢* and ¢ in
equation (3.17a), one obtains

Py = -%[:f“fm [eikx'w*(x')]k[e-ikxw(x)]dx' dx dk (3.17b)

- =

where x' and x are two different variables of integration. The factor

k e-tK% can be expressed as the derivative
-itkx _ . 9 ¢ -ikzx
e Y (i) (3.18)

and equation (3.17b) then becomes

5; = %[:I:[: eikx'w*(:c') 1 % e-ikx)w(ac)d'c' dr dk (3.17¢)

Interchange the order of integration and integrate first over ; integrate by
parts and use the fact that the wave function vanishes at the limits,
Y(2») = 0. Then

o

- =f: [2LTT ‘[m w*(x')f_: Jik(z'-x) g dx,] _fraw(x) g (3.17d)

According to the Fourier integral theorem (refs. 1 and 8), y*(x) is just the
inner bracket of equation (3.17d):

P*(x) = %," 'i’*(x')f e E D g g (3.19)

This theorem may be derived by substituting equation (3.12) for ¢(*¥* in

equation (3.11) and changing the result to the complex conjugate. T =qua-
tion (3.17d) becomes

e [ v [t vw]a (3.17€)

an expression for the average value of momentum in terms of ¢* and the
derivative of ¢. At any point &z, the integrand is just the product of the
momentum p at that point and the probability that the particle is observed

at that point, yy*. Thus the momentum as a function of the position
coordinate is

_h
px_w

wlw
8l

(3.20)
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It is in this sense that the momentum is to be replaced by a derivative
operator whenever it appears in any observable quantity to be evaluated from
the wave function. The y and 2 components of momentum in Cartesian coordi-
nates are, of course, represented by the corresponding derivatives with
respect to y and z:

.y 0 ) .y O
Py > -tk o py * -ik ' Pa” -ih Yy

(3.21)
The operator for a component of momentum squared is obtained by two successive
applications of the single-derivative operator. The operator of most interest

here is the total energy or the Hamiltonian. For a single particle, this
operator is just

Pr’ * Py® * Py’

H = S + V(x,y,2)
A2 [ 32 32 32
- = + + + Vix,y,2
2m (axZ 3y2 332 ( Y )
#2

Note that the corresponding operators for the space coordinates «x, ¥,
and z are just the coordinates themselves. The potential V may be
expressed in any coordinate system other than Cartesian, of course, after
which the Laplacian operator v2 is taken to be the appropriate operator in
that coordinate system also. Frequently, these operators are expressed in
terms of dimensionless coordinates that absorb all constants. Typically, dis-
tances are given in units of the Bohr radius a,, and energy in units of
#2/2may2, in which case the kinetic energy operator becomes simply -v%/2.

One can see from the reciprocal Fourier transform relations between the
wave function ¢(x) and the wave number amplitude ¢(k) (eqs. (3.il1) and
(3.12)) that problems could be worked in momentum space or wave number space
equally as well as in position coordinate space. Then the probability of the
particle having a wave number k is just ¢*¢, and all the observables of the
system are appropriately weighted with this probability factor. The Cartesian
distance coordinate x becomes 1% 3/9p, in this system.

Problem 3.2: Use Fourier transform rclations to show that the average value of x may be found in terms of
wave-number amplitude functions as

B =f”w*(:c)xw:)dx - ,-1" J'J' J' [e“ik'%*(k')]x[eik%(k)]dk' dk dr

-0 w0 -

and that the value of x for a given momentum : is
I T T}
b3k ¢ op
where ¢(p) = h_1/2¢ ", the normalized momentum amplitude wave function. Thus, in momentum space, x, ¥, and 2

are replaced by the ¢ rators
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whenever they appear in any observable quantity to be evaluated from the momentum amplitude functions.

Quantum problems are usually worked in coordinate space rather than
momentum space because the potential energy function: of interest are usually
functions of coordinates only. Thus a much simpler operator results in coordi-
nate space (where the coordinate operators are the coordinates themselves) than
in momentuni space where some very complex derivative operators would result.
Note also that the sign convention on the derivative operators is arbitrary,
provided only that the momentum operator in coordinate space and the coordi-
nate operator in momentum space have opposite signs. For example, the Fourier
transform relations in equations (3.11) and (3.12) could be expressed equally
well with the exponential factors e%kZ and e-%XX interchanged. Then one
would obtain the momentum operator ¢k 3/3x for p, and the coordinate oper-
ator -t% 3/3p, for x, rather than the relations given in equations (3.21)
and (3.23).

To translate these ideas into a physical situation, consider the steady-
state wave function of a single particle moving in the x direction, in a
region of space where the potential is a constant V,. The momentum in the x
direction is then given by

p, = t[2n(E - )12 (3.24)

Several solutions to the Schroedinger equation (3.6) are possible, depending
on the boundary conditions. One such solution is

y /
P (3.25)

If we operate on this function with the momentum operator and then divide by
the wave function as in equation (3.20),

_ th 8 ipyx/hY _

we obtain the probable momentum of the wave, the constant p,. Thus the wave
function in equation (3.25) is said to represent a plane wave traveling with a
constant momentum p,, in the posit’ve =z direction if p, is positive and
in the negative x direction if p is negative. (If we had chosen the
opposite sign convention, where the momentum operator is <k 3/dzx, then equa-
tion (3.25) would merely r.present waves traveling in the opposite directions.)
Note that, while the momentum is fixed, the probability of locating the par-
ticle is everywhere equal so the location is completely indeterminate in
accord with the uncertainty principle. 1In fact, for a single particle, the
constant C must be zero (as discussed relative to eq. (3.10)) in order to
normalize the probability to unity. More typically, we deal with a directed
beam of almost free particles, where the constant C can be normalized to the
known current density
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& where j is the number flux per unit area, p./m 1is the beam velocity, and

5 I’ is the unit of length. Thus (2 has the dimensions of particle number per /

unit volume in this case. Sometimes the integration over the beam cross-

g sectional area that gives the total current is used, in which case the normali-

g zation constant squared has the dimensions of particles per unit length of .

& beam. ¢

&, Generally, the momentum is not a constant, of course, but changes with

f’: the potential of the region in which the particle moves. Again, if the par-

fg ticle is restricted to one-dimensional motion for simplicity, the wave function ,

& has the form

i

o - ¢ Iz EN ) Pt (3.27)

7 where the constant E is the total energy and the potential V and amplitude

N C are both functions of x. If V is relatively constant over a region )

i large compared with the wavelength, A{2m(E - V)]"1/2 (which corresponds to

i classical behavior of the particle), the solution to the Schroedinger equation )

, has the same form as equation (3.25) with nearly constant ( and with p,

‘. representing the slowly varying quantity [2m(E - ¥)]!/2. Any arbitrary poten- .
tial function can be approximated by a series of step functions, each giving a &
solution for the wave function of the
form of equation (3.25). These solu- z> | | ;
tions may be interfaced with one E { | :
another by matching the magnitude and 2 2 }
the first derivative of the wave func- g | ¥
tion at each interface to give an §§ {
approximation to the true wave function. } ; : ;
Matching the wave functions conserves > RE ! . !
the probable number density at that | TOTAL ENERGY,E | '
point and makes number density a con- : !
tinuous function; matching the deriva- { i
tives conserves the probable momentum } { '
at that point and makes momentum a con- g | !
tinuous function. In this manner, the z | POTENTIAL |
character of the wave function for any I/ ENeReY, v !
arbitrary potential can be physically } ! d L
assessed, even though the analytic I T
expression for that function may be L ‘{
complex. For example, figure 3.1 shows X Xo Xz
the form of the wave function for a DISTANCE
beam of free particles crossing a poten- Figure 3.1.- Wave function for a beam
tial hump of some sort. Only the real of free particles crossing a
part of° ¥ is shown, but an imaginary potential hump;
part 90° out of phase with the real . 11/ o
part can be visualized out of the plane v~ Re{c ez[zm(E’- 21k zx/h,. '
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of the figure. Up to point =z, ¥
has a constant amplitude and wave-

F 4

S’ length characteristic of the com-
§§ pletely free beam. At x;, the
|L§ wavelength and the amplitude both
53 increase as the beam loses momentum
2

and bunches up over the potential
| hump. At the potential maximum, the
y’ wavelength and amplitude decrease
again until they return to their
original value at x;. In the step
function approximation, ¢ and V are
piecewise constent, and the result
cf operating on the wave function
with the momentum operator and
dividing by the wave function is a
real quantity, corresponding to the
fact that the momentum of the beam
is everywhere observable:

A

TOTAL ENERGY, E

POTENTIAL
ENERGY, V

ENERGY

M

I Xo :
DISTANCE - }!bﬁ g—i= [2m(F-N1Y2  (3.28)

Figure 3.2.- Wave function for a bound

particle in steady state in a In many situations, the wave
potential well: function is nceded for particles
z<xzy, V-C e[ZW(V-E)]“ZxM that are bOLflnd and r.no;le at;clmt }izn
1/2 some sort o otential well. ven

Ty <x;<xy, V-C cos[Zm(E;V)] z/h in a gas wherz the particles are

@y <z, V-C e-[zm(V—E)]l 22/% relatively free, the particles are

eventually bound by the walls of the

container, for example. The particle then reflects from the region where
V-E becomes positive, as illustrated in figure 3.2, again for one-
dimensional motion. In this case the reflected wave is added to the trans-
mitted wave, which in steady state sets up a standing wave. Again, for the
slowly varying potential case, the wave function has the character of cosine
or sine waves if F > U:

. _in1l/2 i /2
- C‘ez[Zm(E NIY 2/b , -il2m(E-V)] Cx/h (3.29a)
but decreases as an exponential in the region where V > E:
1/2,
o - ¢ Gtlm(V-E)] w/h (3.29b)

The negative exponent must be used if x increases and the positive exponent
if x decreases. Otherwise, the wave function becomes infinite at the bound-
aries (x » t«) and the probability everywhere vanishes (i.e., ¢ = 0). In
figure 3.2, a standing wave is depicted between ) and xp with small
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amplitude and short wavelength near the potential minimum, where the particle
has the largest velocity and the least probability of being located, and with
large amplitude and long wavelength near the classical turning points x; and
27, where the particle has the least velocity and the largest probability of

being located. Outside the region z; to x,, the wave function is nonoscil-

lating and has an exponentially decreasing amplitude.

Note that the momentum operator leads to an imaginary quantity with such
a function. For example, if E > V and ¢ ~ cos kzx,

.k 3 . .
- %?-5%-= -ihk cos kx sin kx (3.3r1)
while, if E<V and ¢ - &%,
h 3 _ .
kv -ihk (3.30b)

This corresponds to the fact that momentum is unobservable in this system;
that is, one cannot tell whether the bound particle in steady state is
approaching the potential barrier or receding from it. However, note that
kinetic energy and probability both have finite real values in the region

V > E. The skin depth where the probability is appreciable in this region 1s
very thin if V >> E, of course.

A system of gas particles in a box is modelled well by assuming that the
box is potential free and that the walls are a sudden discontinuous potential
rise to +=. Then the wave functions for such particles are precisely the
sine and cosine waves that match these boundary conditions; only in the region
of the wall, where the barrier is not truly discontinuous, would these wave
functions be somewhat imprecise. Gas particles move in three dimensions, of
course, but usually in relatively potential free space, in which case the
three-dimensional wave function can be simply expressed as a product of one-
dimensional wave functions of the type discussed above:

0(2.y,2) = W(@PEe(a) = ¢ o Kahyyrkz2) (3.31)

In many cases of interest, particles are bound in a potential well, with
boundary conditions best described in spherical, or sometimes cylindrical,
coordinates. In these coordinate systems, the momentum operators are no
longer simple first derivatives, as in equation (5.21), but must be con-
structed so that the value of an observable quantity given by the operator is
a real quantity. A number is purely real if, and only if, it equals its com-
plex conjugate. Thus the operator O which corresponds to an average observ-
able quantity 0 must satisfy the relation

0 =fux(0v)dr = fu(O*y*)dr = O* (3.32)
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A class of operators called Hermitian have this property. Actually, Hermitian
operators may have yet more general properties with respect to an entire class
of functions. These properties are discussed briefly in appendix 3-A, along
with some comments on wave functions that have spherical or cylindrical symme-
try, so that the reader may refresh his knowledge in these hasic quantum
topics.

3.4 QUANTIZED FREE PARTICLES

A particle moving in potential free space (V = 0) with momentum E==fﬁ
has a wave function that obeys

v2w + k2w =0 (3.33)

The solution is determined by the boundary conditions, of course. If boundary
conditions consistent with a plane wave are assigned, a traveling wave solu-
tion in three dimensions takes the form

B
v = ¢ kT (3.34)

-»>

where % and 7 are now vector quantities giving the wave number and position
in three orthogonal coordinate directions. The steady-state, standing wave
function that fits the given boundary conditions is formed from a linear super-
position of the traveling wave solutions above; these are expressible as prod-
ucts of cosine or sine factors, for example,

Y = C cos(kiry)cos(kory)cos(kirs) (3.34a)

where the subscripts 1, 2, and 3 represent vector components in the x, y, and
z directions, respectively. Consistent with the choice of the plaae-wave
solution, a boxlike volume with sides A;, A, and A3 is imposed as the
boundary. (Different boundary conditions are required for a differently
shaped standing wave.) The standing wave must return to its origiral value
after a distance 2A; (on: complete traverse of the box in both directions);
therefore,

4wpiA.

2k;Ag = % L 2my (3.35)

where n; may be any integer from 0 to » and is a quantum number that repre-
sents the steady-state translational wave function of a particle. The energy
of the particle in steady state is thus

N ORORG)

The usual procedure at this point is to combine all energies lying within

a range de and compute how many different combinations of the n; give this
same energy; this number is the degeneracy g. We can equally well count each
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state separately with unit degeneracy. The partition function for the
translational motion is then (see ch. 1)

[+ 2]

-]
Q =Ee'€7:/kT= z e-alznlz E e-aznzz
3 el o

Nop=

(3.37a)

2.2
e #3773
n3=0

where a;2 is 72/8mkTA;?. Because a; is normally very small compared with
unity, the sums may be approximated with an integral

) o 2.2
:e“” =f eaxd:c=-2/£ (3.38)
n= o @
Thus, the partition function of the free particle becomes
3/2 3/2
= (BTN Ay = (KLY y (3.37b)
h? h2 g

where V 1is the potential free volume available to the particle. We state
without proof that the same result as equation (3.37b) would be found for an

arbitrarily shaped veclume if the appropriate standing wave function for that
shape were used (ref. 2).

Problem 3.3: Show that for a gas of H; molecules at normal temperature and density, and with scattering
cross sections the order of 107!% c¢m?, a2 is the order of 10-6. Thus, the integral in equation (3.38} is a good

approximation for the sums involved in the partition function. Note that the approximation improves as density
and scattering cross section decrease and temperature and molecular weight increase.

3.5 CLASSICAL FREE PARTICLES

The spacing between energy levels of a free particle is nermally small
compared with k7T, at least for moderate values of the quantum number n:

?ET‘ = a2n? | % = 2a2n (3.39)

In such cases, one expects the correspondence principle to apply and the
classical and quantum results should be the same. The classical partition
function for the free particle is

Q= 21—3- f .. fe-H/kT dxy drp, dxsy dpy dp, dpj (3.40)

The Hamiltonian expressiun for the energy of a free particle is

P2+ p,? + byl

H = > (3.41)
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Performing the integrations over x;, x7, and x3 yields the free volume V
over which the Hamiltonian is given by a2quation (3.41). Thus

3
® _p.2 .
0= ;V? (J' ¢ Pi/2mkT dpi) - ZY’ (2nmkr) 3/2 (3.42)

the same result obtained by the quantum arguments, equation (3.37b).
3.6 THERMODYNAMIC PROPERTIES OF INERT GASES COMPOSED OF CLASSICAL PARTICLES

For gas particles with no internal degrees of freedom, Q/N, from
equation (3.42), is

9.V 3/2
¥ = s (2mmkT) (3.43)
The energy is then
g, =gr2(3inQ) .3
E - E, RT( s )v > BT (3.44)

and the specific heat at constant volume

¢y = (%)V - %R (3.45)

The entropy becomes

Q (a in Q)
S=RInx+ RT|{—-7+—) + R
N 7 Jy
- 14 3/2 S
= F In -N—h—3- (2mmkT) + -2- R (3.46)
and the free energy is given by
F - By = -Rr(in 2. 1)
/
= -RT [Zn Ev% (2nmkT) 3/ 2 & 1] (3.47)
The pressure is
- (2£Y . RZ

the familiar ideal gas law. The enthalpy A and free enthalpy G are simply
evaluated by adding pV to equation (3.44) and (3.47), respectively.
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So far, the gas has been treated as a collection of independent particles.
This model is a good approximation for dilute gases where the particles have
negligible interaction except during collisions, which occupy only a small
fraction of time. The above results are later modified to account for disper-
sion forces in very dense gases (ch. 8). Even in the dilute gas phase, how-
ever, collections ¢f electrons and photons are found to obey somewhat differ-
ent statistics than the Maxwell-Boltzmann statistics used thus far. The
differences introduced by quantum statistics are considered next.

3.7 THERMODYNAMIC PROPERTIES OF INERT GASES COMPOSED OF QUANTUM PARTICLES

The thermodynamic properties of gases composed of quantized gas particles
are slightly different than the nroperties deduced for a gas of Maxwell-
Boltzmann particles because the statistical distributions are different. The
deviation from the Maxwell-Boltzmann distribution is called degeneration (when
used in this sense, the term has no connection with the concept of a degener-
ate energy level). The normalization parameter a is an index of this degen-
eration. One readily sees that if a 1is very large, both the Einstein-Bose
and Fermi-Dirac distributions become Maxwell-Boltzmann as the factor *1l is
negligible compared with e**P€7, In this state, n; << g: and the degenerate
energy levels are not filled, which means that the state 1s one of high dilu-
tion and high energy. The smailer the value of a, the larger will be the
effect of degeneration. The minimum value o can have is zero for the
Einstein-Bose gas since negative n; is meaningless, while o can go as far
as -« for the Fermi-Dirac gas.

Before investigating quantum effects on thermodynamic properties of gases,
we derive general ‘ormulas for the kinetic energy and pressure of weakly inter-
acting quantized particles without internal energy. At any given instant,
each particle is in one of the available steady-state eigenvalues given by
equation (3.36). Consider the special case of a cubical box with equal sides
A = Ay = A3 = V1’3, The energy of = noninteracting particles in this box
is

n » , , .
o El APYE §(n1i M T ”37;) (3.49)

A fundamental theorem of quantum r.echanics states that reversible adiabatic
variations of external pirameters d~ urt change the quantum ni'mbers. In prac-
tical terms, this means that if th¢ porturbations are small enough, the quan-
tun states are perturbed so little that the summation of squared quantum
numbers in equation (3.49) is essentially constant. In this limit, then

i eonst/V?/3 (3.50a)
The same result occurs for any irhitrarily shaped volume {see ref. 2), and the

result is also the same as for classical ideal gases in reversible adiabatic
change of state,
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E= LT R

N

BT = %-pV - (3.50b)

since vy, the ratio of specific heats, is just 5/3 for a gas of monatomic
particles considered here.

A completely general relation for pressure follows fron ecquations (1.9)
and (3.50):

BB\ 2L
(&) . 2L )
p (av)s £ L (3.51)

This relaticn is useful later in obtaining the equation of state for
degenerate gases.

Define a vector magnitude squared v as the sum of all sagu2..ed quantum
numbers:

n
v = z: n%i + ngi + ngi (3.52)
1=2]
Ther the number of states with energy EF or less is just the number of
lattice points in a volume 1/8 the volume a sphere of radius v, or mv3/6
(i.e., just the volume of the spherical quadrant in which all quantum numbers
are positive). From equation (3.49) and (3.52), one obtains as the total
number of quantum states with energy less than E:

4nV(2mE) 3/ 2

G = (23 4y 3h3

(3.53)

where the result is multiplied by (22 + 1) to account for the degeneracy of
spin states asccurring when the gas particles have spin quantum number s (see
ch. 4). The degeneracy of states with energy levels between % and E + dE is
thus

dG

g% a - (26 + D2nv(em) ¥ 251/ dp

h3

(3.54)

Prchlem 3.4: Show that the total number of degenerate states available to gas particles of normal mass and
temperature is the order of 102“ per c¢m? so that, at normal gas densities, only a fraction of the degenerate
states 1s occupied.

First consider the case of ncgligible degeneration. The factor e ? s
given by normalization to the total number of particles n as
” ” 3/2 ®
n= (28 + 1) :EY(*:§13-—- e ® J' eV 2 g (3.55)
o]

where the variable of interration x = E/k7. Thus
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2% = nh (3.56)

(28 + 1)V(2mmkT)3/2

is the degeneration factor obtained when the quantized particles obey Maxwell-
Boltzmann statistics. If this value of e™® is substituted in the distribu-
tion function, the usual Maxwell velocity distribution iaw of kinetic theory
is obtained. The dimensionless quanti+,; on the right-hand side in equa-

tion (3.56) is defined as y, for ease in formulating the expansions that
follow, and it is a very small quantity for usual values of m, T, and V/n.

Next consider the Einstein-Bose gas. The degeneracy factor g is the
same as given by equatio.. (3.54), but the distribution function now has a
different form:

u = nh’ - = 1 J.w xl/z dz (3.57)
Y (25 + DV(2mmkT)3/2 T(3/2) ) eorx ) o
Digress for a moment to examine the integrals
® r
A x dx
U(a,r) =3 ) Frra (3.58)
o * -
The values of r of interest are 1/2 and 3/2. Lxpand the integrand in
equation (3.58) as
zr = -n(a+x)
—L =" ) e (3.59
o+
e - 1 n=i
Then
_ 1 N na p® r -nx
U((!,T‘) = m Z e fO dx
yi=1
- ,-Na
e
= 2 &= (3.60)

Note that the series converges for all a > 0. The value of y given by
equation (3.57) can thus be expressed as the series

1 e-Za -3a
y = U(x, 7) = e "4 + + ... (3.61)

T"  quantity e ¢

first approximation is

may be obtained by successive approximation. The

e ® =y (3.62a)
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which gives just the Maxwell-Boltzmann law. Substituting this value of e~
in all but the first term of the series in equation (3.61) yields a second
approximation to terms of order y2:

2
- -
e =y - 5372 (3.62h)

Similarly, substituting the second approximation in all but the first term of
the series yields a third approximation to terms of order y3:

2
o _ y 1 1 ),.3 ’
e ’y'zzz—/2+(74_'33/2)y (3.62¢)

The process can easily by continued to higher-order terms, but the third
approximation is sufficiently precise for most applications.

Now calculate the energy and pressure for the Einstein-Bose gas:

g=® 372 @372
= c dn= (28 + 1)V (2wmkT) kg’ x3/% dx W
e h3 .n.l 2 ea+x -1

U(a,3/2 > (3.63)

_3 U(a,3/2)
=5 KT Giai1/2)

)

The ratio U(a,3/2)/U(x,?/2) corrects the classical energy to account for the
effects of degeneration.

The pressure is obtained from equation (3.51) as

nkT U(a,3/2)

- 2B _ nkT Ula,3/2)
P=3V° 77 U@,1/2) (3.64)

so the same ratio corrects the classical pressure for effects of degeneration.

]

Consider weak degeneration where the third approximation is sufficient

( 2E ) - (EV_) L e, et e, (3.65a)
3InkT nkT y 5572 z5/2 T T )

. . -Q . .
then, if we smbstitute for e . t‘ue correction factor becomes

-~

2EN (B Y. g - oo 2 )
(SnkT) —(nkT)- 1 - 0.i768y - 0.0033y% - . . . (3.65b)

74



R

B o

FEW ' SYTORE

P | R L L

For H, at standard conditions, y = 1075, so both energy and pressure
take their classical values. For other gases, the value of y 1is even
smaller because of the larger mass involved. Only at very low temperatures
will strong degeneration occur. To see how low these temperatures must be,
consider the minimum value of o that can occur for an Einstein-Bose gas,
namely, a = 0. Then the series expression for Yy converges to a finite limit

1 1 1
+ - +
23/2 33/2 53/2

y=1+ + ... = 2,612 (3.66)

and the temperature at this .imit is

h? n 2/3
To = Fmmk [2.6121’(23 n 1)] (3.67)

(called the critical temperature). One might conclude that lower temperatures
are not possible for an Einstein-Bose gas since o caanot be less than zero
in this case. However, this conclusion is not correct; the value of n is
actually given by a summation rather than the integral, and the summation
terms have positive values for n; for all T even when a = 0. At tempera-
tures below critical, an increasing number of molecules are found in the
ground state until, finally, at T = 0 all molecules are in the ground state.
On coupression or expansion at constant T below c1 iical, pressure does not
vary and the gas behaves like a two-phase system, a behavior called "condensa-
tion" of the Einstein-Bose gas.

He" is the only molecule that provides a perceptible value of T,, and
even in this case the gas liquifies .t 4° K, betore the critical point is
reached, and the assumption that the system is composed of weakly interacting
particles is no longer valid. The critical temperature given by equa-
tion (3.67) with the liquid He mol volume equal to 27.6 cc is T, = 3.13° K,
quantitatively somewhat different than the observed ) point of liquid He,
2.19° K. (The properties of liquid He drastically change at the X point.
For example, Hel condenses to Hell below the XA point and is then observed to
have nearly zero viscosity, zero surface tension, and fantastically high
thermal conductivity - hundreds ot times the value of Cu and thousands of
times larger than Hel). Nevertheless, the condensation effuct predicteu for a
gas of weakly interacting bosorns does qualitatively describe many of the
observed features of Hell the simnle model described needs to be corrected
primarily for perturbation effects of nearby neighbors in the liquid phase.

In a practical sense, aside from understanding the behavior of Hell, the
quantum model of a boson gas is not very useful. However, the quantum model
of a gas composed of fermions, which obey Fermi-Dirac stat..tics, is exceed-
ingly useful because electrons free to move in space or in a crystal lattice
of conducting wmaterial comprise such a gas. In this case, the mathematical
model develops exactly the same as for the boson except that the negative sign
in the denominator of the ‘ntegrand becomes a plus:
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ih3 1 T xl/2 gy
= = - = 3.68
Y (28 + 1)V(2mmkT)3/2  T(3/2) Jo %% 4+ ) (3.68)
/
For this case, examine the integrals
1 ® z1/2 g .
V(a,r) = f (3.69) -
'(r +1 a+x ,
( ) o € + 1 '
for the range of a from -oo to +o0. Consider first o > 0 and, subseauently,
a < GC.
For a > 0, expanding the integrand as before one obtains
bt - -2a -3
1 (™l e e
y=V(°"")=Z P+ = e - Y732
= n 23/2  z3/2
which, by successive approximation, leads to a formula similar to the boson
gas case:
2
-a _ ] 1 _1 3
e y + 2372 + (4 33/2) y> o+ ... (3.70)
For a < 0, the series above diverges. Sommerfeld (ref. 9) developed a
series in inverse powers of o which converges only for a < -1 (see also the
review of degenerate gas relations .n ref. 10). To terms of second order,
this series is
r+i 2
R G- e+ 1) 1
V(a,r) R 1+ 3 = + . J (3.71)
which can be used when a << -1. Thus,
_N3/2 2 l
y = Ale) <1+"+... (3.72)
3/ 8a2
and !
273
2/3 2 -2/3 2
(o) = 3/ y 1+ -Ts v ... = (éfiji) (l S
4 8&2 4 12(12
(3.73)
Again, by use of successive approximation, we obtain for a first approximation
2/3 !
(-a) = (———*_3‘/;7 ”) (3.74)
76 i
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and, for a second approximation,

2/3( L/3
(-a) =( ) '} (3/_ y) .. ] (3.75)

which is sufficiently good for very strong degeneration, o << -1.

Proceeding as before, we find that the expressions for energy and
pressure have the same form for the fermion gas as for the boson gas except
that the functions V(a,r) replace the functions U(a,r):

28 pV _ V(a,3/2)

- kT = WkT ~ V(ar1/2) (3.76)
For the case of weak degeneration, the expansions are the same as before except
for an alternation in sign of the series terms

& _ PV . 2
i kT - 7kT (1 + 0.1768y - 0.0033y< + . . .) (3.77)
é( Physically, the effect of degeneration is like an attractive force between

boson particles which reduces the pressure and like a repulsive force between
fermion particles which increases the pressure. For strong degeneration of
fermions, the Sommerfeld approximation is used:

=3 V(a,3/2)
B =3 kT G177) ,
(1 + %EE + .. )
.3 r(s/2) ¢
= 5 nkT(-a) T(7/2) (1 . ) )
§37'+ e . .
« g nkT(-a) (1 + ?';32- . ) (3.78)

Substizuting for o from equation (3.75) one obtains, to terms nf order

y‘2/3
3 3/ 23 sn2 [ 4 \*'°
™ T
E = gnkT <_4 ) [1 + —15—(3—/1_;—\1/) +, . .] (3.79)
From equation (3.68), y2/3 varies as 7T°1:
2/3 2/3
iy w [ 3n ] 5.50)
4 T 2mkT L(?s + 1)4nY :
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so at absolute zero temperature the fermion gas still has finite energy and
pressure

) 2/3 o 2/3
3pV _ 3nh [ 3n ] n2nm (28*1)4’”’] KRer2. . . . (3.81)

E===Tom |+ Dan?| ‘2 ™

The first term on the right side of equation (3.2') is just the zero point
energy of a Fermi-Dirac gas. The constant volume specific heat vanishes at
zero temperature instead of being finite (3nk/2) as for the Maxwell-Boltzmann

gas:

2/3
_{3EY _n?nm [(28 +1)4rnV 2
cy=(33) =13 [ - ] Kre, . . (3.82)

The existence of E, follows from the Pauli exclusion principle, of
course. Only (28 + 1) particles can occupy the lowest state, the qext (28+1)
must go into the next highest state, and so on. The sum of all tiese energies

is E,.

Problem 3.5: Derive the expression for E, by normalizing the distribution at absolute zerc temperature so
that all levels up to ¢, are filled:

€m ’ 3s2 Em
n-f dg.‘____)___L____23~121;V2m\ f el 4e
(] h (2

Then, with the value of ¢n so obtained, calculate

€m 372 €m
E, _f cdn = [28‘1!21!]3/(2"1! f M2 4
(] h ©

Problem 3.6: Calculate the value of y and a for Ag at 300° XK. Use N/V = 5.9x1022 electrons/cm? and
spin quantum number & = 1/2. Show that y is the order of 10% rather than 105 as for ordinary gases and that
(-a) is the order of 102, which is large enough for the Sommerfeld expansions to become reasonably accurate. Also
find the contribution of the free electrons to the specific heat C, and show that it is the order of 1072 times
the specific heat of a normal nondegenerate gas.

Problem 3.7: Tc what temperature would Ag need to be raised (assuming that the crystal did not melt) so
that the electron gas would be reasonab.y nondegenerate and contribute approximately 3nk/2 to the specific
heat? Note that according to equation (3.77) y must be the order of 1 or less.

3.8 CONCLUDING REMARKS

The uncertainty principle is fundamental to the quantum behavior of
matter and follows from the mathematical description, in terms of Fourier
transform integrals, of a particle whose motion is described by a wave but
which is simultaneously localized in space. This principle establishes the
quantum cell size in phase space and, consequently, the numerical equivalence
between the classical phase integrals and the partition functions, which allow
us to evaluate all thermodynamic properties of a system of particles. In addi-
tion, the uncertainty principle establishes the derivative operators that
allow us to evaluate functions of momentum in physical space from the quantum
wave functions or, conversely, tn evaluate functions of position in momentum
space from the momentum amplitude functions, which are Fourier transforms of

TUT . bgg oty o .
Riv: [ I I T
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the wave functions. These quantum formulations remove time as a parameter
from steady-state problems, and these may then become easier to solve than in
the corresponding classical fbrmulat:ons, even when the c1a551ca1 model is a
good approximation.

In most gases of interest, the particles behave classically and the
statistics lead to the Maxwell-Boltzmam. distribution for the equilibrium
state of a system of particles. However, at very high density and/or very low
temperature, the quantum effects of gas degeneration are sometimes observed.
If the gas is composed of particles with an odd number multiple of half inte-
ger spin (i.e., the particles consist of an odd number of fundamental parti-
cles), the particles cannot simultanecusly occupy the same quantum state and
they then obey Fermi-Dirac statistics. At low temperature or high density,
these particles behave as though they .epel one another. Effects of this
repulsion are observed in gaslike, high-density conduction electrons in metals,
for example. If the gas is composed of particles with an even number multiple
of half integer spin (i.e., the particles consist of an even number of funda-
mental particles), the particles can simultaneously occupy the same quantum
state and they then obey Bose-Einstein statistics. At low temperature or high-
density, these particles behave as though they attract one another. Effects
of this condensation are noticed in the low-temperature behavior of helium,
for example.

The analysis of the normally weak quantum effects mentioned above reminds
us that the models established for the partition functions and the derivative
thermodynamic properties are, after all, just models. Despite the very good
accuracy these models attain over a broad range of variablec, all have approxi-
mations that cventually limit their usefulness when certain parameters of
state are extended far enough.
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APPENDIX 3-A: HERMITIAN OPERATORS AND WAVE FRONTS IN CYLINDRICAL

AND SPHERICAL COORDINATES

In section 3.3, we found that by expressing the wave function as a
Fourier integral in momentum space, a component of momentum could be expressed
as an operator acting on the weve function, all divided by the wave function:

ih 3
n = Dy (3-A1)

w.
Sle

A similar operator relation obtains for observable quantities other than
momentum: for example, some arbitrary function of both momentum and position
such as total energy. Such operator relations may be expressed generally as

Oy = 0y (3-A2)

where 0O corresponds to the operator and O corresponds to the observable
quantity, which is a real number.

Multiply equation (3-A2) by ¢* and integrate over all space to obtain
Ju* Ov)dt = fy*oy dv = 0 (3-A3a)

Also take the complex conjugate of equation (3-A2), multiply »y ¢, and
integrate over all space:

S (@*y*)dr = fyory* dr = O* (3-A3b)

But since O is everywhere a reai quantity, the average value 0 muust also
be real, which is true if and only if O equals its complex conjugate O*.
Thus the equality of equation (3.32) must obtain

Ju*(Ov)dr = Sy (0*v*)dr (3-A4)

Any operator that satisfies this equality is said to be Hermitian with
respect to the function . Often the operators of interest in quantum mech-
anics are Hermitian with respect to an entire set of wave functions as well as
to a single member of this set. For example, a system in steady state may
generally occupy any one of a number of different steady states a, b, ¢, etc.
that have different energies and different wave functions, ¢,, ¥, ¥,, etc.
These are orthogonal to one another (ref. 3) and may be normalized so that

f“‘j*% dr = 8;;(=1 if 1=, =0 if 1#J) (3-A5)

Equation (3-A5) merely expresses the physical requirement that the integral of
the probability over all possible configuration space is unity. and that the
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probability vanishes that the system is simultaneously in steady state < and
a different steady state J.

The same operator 0 will generally result in different values of the
observable 04, 0, 04, etc., depending on the state of the system

Ovg = 039, (3-A6)
Multiply equation (3-A6) by WJ* and integrate over all space to obtain

oo

IWJ’* (Wi)d‘l’ = fwﬂ.*o‘l:w‘!: de = Oia- (3-A7a)

where ij Tepresents the average value of O during a time-dependent transi-

tion from state i to state Jj. (Such transition quantities are discussed in
chapters 5 through 8 when perturbation coupling between states is considered,
for example.) Similarly, in the reverse transition from state J to state <,

fui* Oug)de = f;*050; di=0,, (3-A7b)

the complex conjugates of the above relations may also be formed as

IWj(b*Wi*)dt = ;wjoi*wi* dt = Eéj* (3-A7c)
Ju; 00 ;*)dr = f9;0;40,* dv = O4p* (3-A7d)

Often we are concerned with quantities where the average value in transition
in one direction is the same as the average value in the reverse direction.
Sometimes the quantity is independent of the state of the system and is con-
served (0; = 0;). For example, 0 might be a perturbation potential energy
that is a function of the coordinates but is externally induced and does not
depend on the state of the system acted on by the perturbation. In such cases,
the averages Oi. and 0.£ are equal, and if the observable is everywhere a

real quantity the averages must also equal their complex conjugates. Then
Jo;*@vp)dr = fu; (0ry *)d (3-A8)

Equation (3-A8) defines an operator known as Hermitian with respect to the
entire class of functions. Note that if 0 1is a constant, such as total
energy or total angular momentum, the integrals in equations (3-A7) and (3-A8)
all vanish by virtue of the orthogcnality relation, equation (3-a5), so that
the operator for any constant quantity is automatically Hermitian.

Next consider some specific cases of the general relations above in
Cartesian, spherical, and cylindrical coordinate systems. First, the momentum
operator of a particle in Cartesian coordinates (-i% 3/3x) is found to be
Hermitian with respect to a given wave function y:

A-5926 81
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R I L (1

The first integral above has beeg integrated by parts, with u = ¢* and
dv = (3y/dx)dx. The term |y*y|"_ vanishes because the wave function must

vanish at the limits x > 1w,

Th~ kinetic energy operator pxz/Zm is obtained by successive operations:

AN,

2
p ; ) A2 32
Lg -Z‘—n—-—a— -th—a‘ = --———a_- (S-Alo)
2m 2m X n 9.2
and this operator is also Hermitian.
Problem 3,8: Show that
Pt = -h2f o g—?—dm . hzf—g—%%%: drwp?* (3-a11)

Use integration by parts. Note that not only the wave function but also all its derivatives must vanish at the
limits x + t= if the probability is to be everywhere finite.

In spherical coordinates, the operators are not quite as simple as in
Cartesian coordinates. Consider a particle's radial momentum p, and its con-
jugate coordinate r, for example. If p, is replaced by the simple deriva-
tive -1k 3/3r, the resulting operator is not Hermitian because of the 72
factor that appears in the spherical volume element. However, if the momentum

is expressed in an equivalent form
Py ® % ((2%9) (3-Al2a)

and then the radial momentum is replaced by the derivative -i#A 3/3r:

Fop-d(agd-a(@-d) o

the resulting operator is found to be Hermitian with respect to any spherical
wave function ¢ that vanishes at the limit pr -+ =
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i = - 5(|W*1"| f p ,.2 dr f v dr) ;
A _‘L.* Ll 2 e i
: s th w + ré dr = p (3-A13) 3
H or r r £
i 0 {
L hl
|4 Problem 3.9: Show that the operator -if(3/3r) is not Hermitian with respect to wave functions expressed in T
X spherical coordinates. 4
i Show that the operator for the kinetic energy associated with the radial momentum of a particle is Hermitian ‘
7 when expressed in the form r

-5

2 02 (a2 2 3
- —_— 2 o e = -
2mr (pr ™) 2m \3p? ‘r ar') (3-A14)

A T

-
2

Show that the operator in equation (3-Al4) is obtained by two successive applications of the operator in
equation (3-A12b).

TEOFTE RN .

oA

In cylindrical coordinates, the situation is slightly more complex yet. :
The Hermitian operator for the radial momentum of a particle is obtained when
the momentum is expressed as the average of two operators:

3 mw'
(pr + = prr) = -1k (3-; R (3-A15)

In this ®ase, however, a Hermitian operator for momentum squared is not
obtained when two successive applications of the operator in equation (3-A15)
are used.

Problem 3.10: Show that -h2[(3/ar) + (1/2r)][(2/3r) + (1/2r)] does not lead to a Hermitian operator for .
momentum squared in cylindrical coordinates. *

Show that the toilowing average of two operators is Hermitian in cylindrical ce~rdinates: ‘s

'M"““ 3 .
1, 1,02 « R - 13 .
3 (pr * F P r 4 ( * 537 (3-Al6) B

Py

The Hermitian operators in equation (3-Al4) and (3-Al16) correspond to the
usual Laplacian operators in spherical and cylindrical coordinates when the
function depends only on » and is independent of the angles. However, par- il
ticles trapped in a potentia! well typically have angular momentum as well as
radial momentum. The angular momentum operators may or may not be Hermitian, ;
depending on whether the angular momentum is an observable. For example, when :
the potential is glven in spherical coordinates, the wave function may be
expressed as a series of terms of the type sz(coe e)e5m¢ where the PZ
are the associated Legendre polynomials. Such wave functions are used for
rotating molecules in chapter 4, for example. The operator for azi' ithal
angular momentum (rotation about the polar axis) is

A~ R ] -
Py = -ih 35 (3-A17)
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Using this operator with normalized wave functions of the type cim0/(2w)1'2
one obtains

Py = - %. J; T g-ime ( ”"’)do = mho=p* (3-A18)

(Note that m may be either a positive or negative integer.) Thus the opera-
tor in equation (3-A17) is Hermitian for this class of functions and repre-
sents a real observable. Similarly, the operator for azimuthal angular momen-
tum squared is Hermitian:

2 2T, 2 .
5;2 = - % fo e""m(;a;-; em¢)d¢ = m2h2 = {_’:2* (3-A19)

However, the operator for polar angular momentum p, (rotations about the
origin in a piane of constant ¢) is not Hermitian when the wave function is a
purely real quantity in 6. Let P be any such real function; then the opera-
tion on P and integrr ‘o.. over all angles yields

P, = -tk f P —- ain 6 4o = -5;* (3-A20)

The fact that the operator P is non liermitian corresponds to the fact that
pg is unobservaile. Because of the uncertainty principle, once the component
o% total angular momentum along the polar axis is defined, the direction of
the other component is undefinable; this component of momentum may be consid-
ered to be precessing about the polar axis (as it would if any slight perturba-
tion were present) and thus having a time average of zero. The magnjtude of
this component of momentum is definable, however, since the rotationusi kinetic
energy associated with polar angular momentum (i.e., p 2) is an observable.
Accoraingly, the operator Py is found to be Hermitian:

= 2 " 3%p . p.2* -
pgl = -A j; P =5 ein 6 do = p, (3-A21)

In cylindrical symmetry, the angular moncntum and the angular momentum
squared are given by the same operators used in equations (3-Al18) and (3-A19),
respectively, while the =z component ¢f linear momentum and its square are
given by the same operators used for the 2 axis components in Cartesian
coordinates.

With this review of the operators involved, consider the character of the
spherically symmetric wave function:

(3-A22)
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which satisfies the Schroedinger equation in spherical coordinates for a wave
function independent of 6 and ¢:

52 230 . .2
a_r;k + Sag = -k (3-A23)

™n this equation, k2 is the energy £ in units of #2/2m,2 and » is in
units of ap.

If we operate on the function in equation (3-A22) with the radial
momentum operator and then divide by the wave function,

A2, L)k
pr'_ﬁ(ar;:}g(r’) = kh
r

(3-A24)

Thus, the wave function in equation (3-A22) represents a spherically uniform
wave front that describes a particle with radiai momentum kA. If k is
positive the wave advances outward; if negative, the wave advances inward.
Standing waves in a potential well are composed of outward- and inward-
traveling waves and the wave functions are superpositions of functions with
tcth positive and negative values of k. If the potential V 1is some arbi-
trary function of »r, the steady-state or standing wave function has the
character of a series of such functions:

v - [+ le‘i[Zm(E-V)]l/Zr/h + e-i[Zm(E-V)]llzp/ﬁ, (3-A25)

r
in the region F > V, and decreases exponentially in the region V > E:

_C - lemv-E)) P
r

v (3-A26)

For a stepped approximation to the potential V, the standing wave func-
tion is a sequence of wave funciions of the above type which matches magni-
tudes and first derivetives at the interfaces. The spherically symmetric
standing waves thus have the characteristics of C cos kr/r or C sin ko/r,
with variable wave number % and amplitude C, similar to the plane wave
functions discussed in section 3.3 except for the factor r-!. This factor is
iust that required to conserve the probability flux of a spherically uniform
wave growing in its cross-sectional area as r?,

The wave function of a cylindrically symmetric wave is somewhat more
involved near the origin where solutions to the Schroedinger equation are
Bessel functions; but, at large values of r, these solutions reduce to the
form

oLkr

lim ¢ =

i rl/f (3-A27)
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Once again, the wave function corresponds to an outgoing wave if k is
positive. Standing wave functions have the character ( cos kn/r1/2 and
C sin kr/r'/2 in the region E > V and fall off exponentially as
C e-kr/p}/2 ip the region V > E.

With the ahove general characteristics of plane w.ves, spherically
symmetric waves, and cylindrically symmetric waves in mind, one can more
readily visualize wave functions and their properties in cases of rather arbi-
trary symmetry, and also visualize the physical meaning of Hermitian operators
for momentum and momentum squared.

Problem 3.11: Show that a solution to the Schroedinger equation in cylindrical coordinates for s wave
function independent of ¢ and =z

azw 13 2
Fwe * 7" k% (3-A28)
can be expressed as
tkr a;
e "
v o= e - 3-A2)
ri/2 S o0 ( )
where the coefficients a, are given by
. H 2
0™ [(Zn s 1) :]
. o a (3-A30)
el (sk)ml(n 1! %! e
For large r, find that this serics asymptomatically approaches
I ,.ﬁi._‘:‘fi_k_r_, ‘B_____in kr 3-A31
Vet Tttt Tan (3-A3la)
which, except “~r a normalizing constant, is proportional to Bessel functions of hnlf integer order:
bl ke e iJuz(km (3-A31b)

Show that the wave function given by cquation (3-A3la) represents a cylindrically uniform wave
Use the momentum operator in equatirr (3-A158):

ih (a 1 )’ci‘"‘
et e e ()« =

Problem 3.12:
front with outgoinz momentum *4.

(3-A32)
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CHAPTER 4 - RIGID ROTATORS —-

. 4.1 SUMMARY

" U sl SEwls s Cas
LT, Tl (T PR

The two-particle, steady-state Schroedinger equation is transformed to
center of mass ard internuclear distance vector coordinates, leading to the
: free particle wave equation for the kinetic energy motion of the molecule and
. a decoupled wave equation for a single particle of reduced mass moving in a . ,
spherical potential field. The latter describes the vibrational and rota- X
tional energy modes of the diatomic molecule. For fixed internuclear distance, ) :
this becomes the equation of rigid rotator motion. The classical partition R
function for the rotator is derived and compared with the quantum expression. -
Molecular symmetry effects are developed from the generalized Pauli principle
that the steady-state wave function of any system of fundamental particles
must be antisymmetric. Nuclear spin and spin quantum functions are introduced
and ortho- and para-states of rotators, along with their degeneracies, are
T defined. Effects of nuclear spin on entropy are deduced. Next, rigid poly-
atomic rotators are considered and the partition function for this case is
derived. The patterns of rotational energy levels for nonlinear molecules are
discussed for the spherical symmetric top, for the prolate symmetric top, for x
the oblate symmetric top, and for the asymmetric top. Finally, the -
equilibrium energy and specific heat of rigid rotators are derived.
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4.2 INTRODUCTION

’ The diatomic molecule behaves as though it consists of two mass centers
connected by a rather stiff spring. Following a collision between two mole- ,
cules in a gas, the centers of mass of the colliding particles fly apart. At )
: the same time, the molecules are usually rotating about their centers of mass, ' -
and if the previous collisions have been energetic enough to compress the
stiff spring, the atomic centers of the molecule will also be in vibrational
motion along the distance vector between them. Polyatomic molecules behave in
a similar manner, generally rotating about their center of mass as an asym-
metric top and vibrating as a collection of mass points connected by a complex
network of springs. In this chapter, the springs or interatomic bonds are

: considered to be rigid, and the time-independent energy states associated with
the purely rotational motions of the molecule are derived.

The moments of inertia of most molecules are large enough that the energy
levels of rotational motion are rather close together compared with a typical
thermal energy kT. One can thus expect that a classical model of a rigid
rotator will duplicate many features of real rotating molecules reasonably
well. Nevertheless, quantum effects are clearly present in the pattern of
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rotational energy levels observed and in the effects of symmetry and nuclear
spin that occur. The solutions for molecular rotations obtained with
Schroedinger's wave cquatibn are just as simple as the classical solutions, so
in this case there is no particular advantage gained by use of the classical
model, while much of the exact detail would be lost. Therefore, the subject
is approached primarily from the quantum viewpoint.

4.3 SEPARATION OF TRANSLATIONAL AND INTERNAL MODE WAVE FUNCTIONS

S a0 e

Diatomic molecules in steady state, free of external perturbatjons, obey
the two-particle wave equation:

e g, R

¥ . A2 2 A2 2 P P00 ’ .
T my VIV ¥ gy V2%V - V(P - P00 +Ev =0 (4.1) :
‘ ’ . > > - :
v where m; and m; are the masses of the atoms in the molecule, V(»; - »r3) is -

f" ‘ the potential between the two atoms expressed as a function of the distance -
‘ between them, ¢y is the total wave function, £ is the total energy, and the .
kinetic enexgy operator for the <th atom is

~
T e

7 R 2 B2 ( 32 82 32

% + + 402

P el n; Vi 2’”1: 3x;2 ayiz 321:2 (4.2) i
e Lo
é ,Equation (4.1) is transformed from the coordinate system described by r1

and rz, the vector position of the two atoms, to the center-of-mass coordinate
: vector K and the radius vector # between the two atoms with the following ,
& relations: L

¥ + > >
: P21 -1 (4.3) &
§ mP, + mr
3 ->
) 3 = M 2r"2 (4.4)
5 ’ my + mop
E |
i ; which have the x components: |
: | z=ax -2 (4.3a) 4
r 4 %
i, ' + s )
1 X = my + my 1 my + my T2 (4.42)

. and similar expressions for the y and 3 components. The partial derivative v
B operators become .

2 2 2m 2 42
a 3 1 ) 3 > (4.5)
W2 aZ M+ 3:c ax " \mp + mz ax
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; e again with similar expressions for derivatives with respect to y and 2. The ,
B [ sum of the first two terms in equation (4.1) thus include terms such as - -
By

P 2 2 2 2 -
;;;; ..1_ 3 +.1— 3 g(-]-’—+-1.. 3 . 1 3 (4.7) ’
,‘ my 3312 ny 3322 m my 3372 my + m 3}{2 )
? ] and the two-particle wave equation can be expressed as e

;;fa;ﬂ — ¢
¢ B 2, K 2

WRY 3 Vp ¥ - VIV + By =0 (4.8)

é where M is the total mass, m;y + my, and u is the reduced mass defined by

11,1

o 4.9

oo woom "t my (4.9)

S

£ Assume the wave function is separable:

Pt ¥(R,?) = f(R)g(r) (4.10)

i: Then the wave equation can be written as

I

£

i 1 A2 2 1(1&3 29 - vg) + B =

72Mva+g 7n Vrg Vg + FE 0 (4.11)

% The first term on the left is a function only of the center-of-mass coordinate

i R, the second term only of the distance between atoms r. If the sum of these

¥ two functions is to be the constant (-E) for arbitrary values of R and r, then

* the individual terms must be constants. These constants are designated the
; translational energy of the center of mass, E¢, and the internal energy of the

& molecule, E;. Thus, the center of mass obeys the free-particle wave equation:

¢ R 2

¢ m VR f + Etf =0 (4.12)

while the internal motions are described by

B g2 E, - V 4.1
3 Vr gt [Ep-Vr)lg=0 (4.13)

a wave equation with the same form as one that describes a single particle
with mass u moving in the potential field V(r).
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The wave equations given above apply not only to the bound state of two
atoms in a diatomic molecule, but also to the collision process between any
two free particles. Collision processes are not of primary concern here since
the same equilibrium state results regardless of the path followed toward
equilibrium. However, the engineer is ultimately interested in nonequilibrium
properties as well, such as viscosity, thermal conductivity, mass diffusion,
electrical conductivity, etc., and these properties are uniquely determined by
two-body collision processes in gases of normal density. Thus it may be appro-
priate to point out that the separation of the wave equation into equa-
tions (4.12) and (4.13) immediately tells us something about conserved
quantities in any collision process: The kinetic energy, E4, associated with
the total mass moving with the center-of-mass velocity is a conserved quantity
in collision, and is thus unavailable for excitation of internal energy of the
colliding particles. The only energy available for this purpose is the
kinetic energy E; associated with the reduced mass u moving with the
velocity of relative motion between the particles. In the free state, this
energy can be described as the sum of a component associated with just the
change in distance between particles, and a component associated. with the angu-
lar momentum of the particles about their centers of mass. In the bound state,
E; is the sum of the vibrational and rotational energy of the diatomic molecule.

Problem 4.1: Show that the wave equation for three particles with masses mj, mz, and m3 can be expressed
as

h?

2 2
by 2oy e Bo e b

AR
where M is the total mass,
M=mp ¢+ mp ¢+ my

The term u' is another reduced mass given by

.1, 1
u'! msy my + m

and u is the reduced mass in equation (4.9).

The center-of-mass coordinate ﬁ is, in this case,
- > -»>
ﬁ . mxl‘l + MIrs ¢ m;ri
M
while » is the distance between atoms 1 and 2 as given in equation (4.3) and r' is the distance between

atom 3 and the center of mass of atoms 1 and 2:

-
r

mPFy + ma¥y 3
m + m

Further show that if the potential can be expressed as a linear superposition of functions of r and of r',
Ve V(r) + V'(r)
the steady-state wave function can then be expressed as a product of separable functions:
V(E,rr') = S(R)g(P)R(r')
Show that thic leads to a wave equation for a free particle with mass M, a wave equation for a particle with
mass 1 moving in the potential field V(r), and a wave equation for a particle with mass u' moving in the

potentisl field V'(r'), each with a constant component of energy. Note that this process can be repeated with
the addition of still more particles, and so long as the potential is independent of the center-of-mass coordinate,

2omiFy
1

Balg—
i
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a wave equation for a free particle with total mass Em,; results that describes the motion of the center of mass

of the system. Thus, in any system of interacting pn’i‘ticles, the kinetic energy associated with the center-ois-
mass motion is a conserved quantity and is unavailable for chemical reaction or excitation of internsl energy.

4.4 CLASSICAL RIGID ROTATORS

“

L The classical rigid-rotator model of L

i a diatomic molecule consists of two mass

& points constrained to be a fixed distance

i ro, apart (fig. 4.1). The model is free

4 to rotate about the center of mass, and

g, the angular momentum is represented by a

vector I orthogonal to the molecular

g axis with the magnitude wr, 2w, where u CENTER (|Yw

IS -is the reduced mass and w 1is the angular OF MASS

! velocity. Classically, this rotator M, m,

E possesses the energy </

l 2 2 m&_ mer

B g uro‘w L2 (4.14) m, +m; m+m,

: - 2 2T : (A '

F%y

5

where I 1is the moment of inertia . . . . .

s 2 ’ Figure 4.1.- Rigid diatomic

* ur,<. .

N o rotator with angular momentum

L L myma 2

: Problem 4.2: Verify that the total kinetic energy of two point masses m; and my, fixed a distance »,

apart and rotating about their center of mass with angular velocity w, is the same as the kinetic energy of a

5. single particle of mass u = mymy/(m; + my), which is constrained to move along a circle of radius ro, with the
E; same angular velocity w.

’ The angular momentum involves two independent momentum coordinates, and
it may be decomposed into two mutually orthogonal components:

L2 = [,12 + 1',22 (4.15)
p (A third spatially orthogonal vector component is eliminated as an inderendent
variable by the relation that L is orthogonal to the molecular axis.) We

b shall choose a spherical coordinate system with the polar axis 1ying+in the

: plane defined by T and 7o at the polar angle 6 with respect to 7,

P (fig. 4.2).

i3 Problem 4.3: Show that the element of phase space dp, dp, dq, dq, for the particle shown in figure 4.2
(where p, and p, are orthogonal components of the linear momentum vector p,and q; and q, are corresponding
L distance coordinites) can be expressed in terms of the angular momentum components Lg and Ly and the angles

N 8 and ¢

- dpy dp, dqy dq, = dpg dpy ddg day = dbg dL, ein & dods (4.16)
&
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g - 2 With the relation given by
vt equation (4.16), the classical parti- L N
f* _ALcosa tion function (see eq. (1.52b)) for f/ B
A n the rigid rotator is written: . A
R : g
7 /
;é‘x o QI' ™ . - ;‘* ‘
$ S FL )
f I f f a'(L°+L¢mdL9dL¢ eino de dé :
) 2 225%% i
I 4.17) , T
:"‘.'-.-"”"‘ .};
K - by
¥ The integrations over 6 and ¢ give =
B the total solid angle, 4w steradians,
! and equation (4.17) becomes -
* Figure 4.2.- %oordinate system, angulgr Q= hzo"‘ L-z, /2IkT dL.,;) 8n fd"FT'
g . momentum L, and linear momentum p» h r . *
4 ! for the rigid diatomic rotator's (4.18) E
: equivalent single-particle motion. :

5 The effective mass is the reguced
R mass u, the radius vector r, is where 68, is a characteristic L
constant in magm&ude, and the rotat:.onal temperature K2/2rk. b
11near momentum p is orxrthogonal s
g tv ro )
The unit of angular momentum in classical phase space may be deduced from
¥ the uncertainty principle developed in chapter 3:
& Ap,L Aq. = h (4.19, » 2
where p,; and q; represent a linear momentum and its conjugate distance coor-
i dinate, respectively. For a particle moving in a circle of radius »r,, the ‘ 2
E maximum uncertainty in linear position is o “
T Y

Aq = 27p, (4.20) o

- which corresponds to the minimum uncertainty in angular momentum /(
AL = 7y Ap (4.21) -
x Thus Al is ’&
Ca R A, /e
QL Mo=rogr=gy=h (4.22) I
;: - ¢ P
the quantum unit of angular momentum. The angular momentum can thus be
determined only within some interval that is a multiple of A: .
oo o
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L=Ht (4.23)
: :
where . 1is an integer. The classical energy of a two-dimensional rigid
rotator expressed in these units is ’ i
K212 2 B
E= =1 " konl (4.24) ;
n(.

Problem 4.4: Show that, for two independen: modes of angular momentum, thc number of cells of phase space R .
which have the total energy given by equation (4.24) is 2I. Using this value rfor the degeneracy, g(l), show i
that the phase integral cxpressed in the fom ¥
RN AT}V i
Qp w2 I’ g(l)e dl (4.285) .
leads to thc same results as equition (4.18). d
R
4.5 QUANTIZED RIGTD ROTATORS | -3
? 2
The rigid rotator has only kinetic energy; the potential is zero so the s?
steady-state wave equation is ’ A
2 ‘
v2y + Z‘% EY =0 (4.26)

The wave function Y is separable in spherical angular coordinates 6 and ¢:
Y(0,¢) = P(0)2(4) (4.27)
Substituting equation (4.27) into (4.26) and dividing by Y one obtains

1 329 1 ) 2u
ain 0 + E=0 (4.28) o
er,2 ain? o a¢2 Pr,? gin © '&" g i
which can be arranged as a sum of separate functions of 6 and of ¢ ]
1 "
1d% |eine d g_l_‘_E_' 2 ol | :
d¢2 [ 5 dp (sm ) 3-) + 8in 9] 0 (4.29) g
The two terms on the left must be constants, one the negative of the other, to ' Y
satisfy this relation for arbitrary choice of 6 and ¢. Let ‘ i
12 2 (4.30)
For which a solution is :
e:tim :
¢(¢) = (4.31) :
V2w 3
i
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The term m must be integer for ¢ to be single valued, and the constant of
integration (2¢)-1/2 has been normalized so there is unit probability that ;
the rotator appears.somewhere in the. interval 0 < ¢ < 2x, that .is, the inte- .
gral of ¢#* over all ¢ is unity. ' . L SRR TI

The remaining equation for 2 now becomes
8in o ZdE (ain 0 %) +(-2{1§ 8in2 6 - m)P = 0 ' (4.32)

which is the Legendre differential equation. A finite solution exists only
for energy values given by : ‘ , B

pefritsn =10 vkey (4.33)

with I constrained to integer values equal to or greater than m, that is,

1 2 m. Conversely, the values of m are constrained to integer values
between zero and 7, that is, 0 <m < Z. The solutions, P = PJ(cos 0) are
power series with a finite number of terms known as the associa Legendre
polynomials. The allowed steady-state energy levels for the quantized rotator
differ from the classical rotator in that Z(I + 1) replaces 72 in equa-
tion (4.24). The difference becomes small at large values of 1, aa example
of the correspondence prinicple. Since the quantized total angular momentum
is A/T(7 + 1), the classical relation between energy and angular nomentum is
retained. ' '

Solutions to equation (4.32) in terms of the associated Lefendre poly-
nomials are derived in any elementary text on quantum mechanics (refs. 1 and
2) and are not repeated here. The total rotational wave function is the
spherical harmonic function:

+im - '
‘Yim(el¢) = e/z_; / Lz 2;11*("1)! m) | ﬂ;(aoa 9) (4-34)

where the factor [(27 ¢ 1)(I - m)1/2(1 + m)1]1/2 is the normalizing constant
required so that integration of JYY* over all 4n steradians is unity. Note
that m 1is defined as a positive integer here, and both positive and negative
values are allowed by including both positive and negative exponentials in the
solutions for ¢(¢) (eq. (4.31)). Often m is treated as a positive or nega-
tive integer; then the absolute values must be specified in the associated
Legendre function and its normalizing constant.

‘fhe first few associated Legendre poiynomial. are
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Pyl = 32(1 - 22)1/2 = 3 008 6 ain @
3(1 - z2) = 3 etn2 0

»,
?
L]

(4.35)

PO = (SzS-u)-%(ScoaSe-saoae)

w
W= W=

(15:2 -3 - z)V2 ., — (S cos? 6 - 1)ain @

i
w
[
n

152(1 - 22) = 15 8in? 6 cos 6

W
w
~N
]

15(1 - 22)3/2 = 15 gind o

3
w
w
]

P°-— -Tzz+—--§-oos“6--1;§-aoaze+%

Additional members can be derived from the recursion relations:

(L-m+1)F], = 2L+ 1)aFy - (LamP]_, © (4.36a)

@+1)0 a2 e (emy L eme )P, - (z-m)(z-mn)zlg (4.36b)

+1

or from the relation between Legendre polynomials P: and the associat(
Legencire polynomials P’Z:

X d"° (x)
p';(g) - (1 - 22)"2 i Sl

™

The quantum number m represents the magnitude of the projection of the
total angular momentum (in units of &) on the polar axis of the coordinate
system chosen. Classically, the total angular momentum is 7 and its projec-
tion on the polar ax’s, I cos 0, wmay take any value from -1 to 1 (fig. 4.3a).
For the quantized rotator, the total angular momentum is + units of
and its projection on the polar axis can take the (27 + 1) integer values from
-l to 1 including zero (fig. 4.3(b)). In other words, the degeneracy of
states with total angular nomentum vi(Z + 1)A and rotational energy
(L + 1)k, is (27 + 1),

(4.36¢)
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(a) Classical rotator's total angular

momentum vector I (in units of %)
may be at angle 6 and have the
projection m=1 cos & on the
polar axi,, which takes any value
from I to -1. Without an exter-
nal field, the vector ! remains
fixed in space. If the angular
momentum i; coupled to a field
aligned with the polar axis, the
componcat m remains fixed while
the component I 8in 8 precesses
about the polar axis with an
angular velocity that increases
with the strength of the coupling.

.'T_.

(b) Quantized rotator's total angular
momentum vector YI(Z + 1) (in units
of %) takes one of the (27 + 1)
possible positions with respect to
the polar axis, for which the pro-
jection m is any integer from 1
to -1. Again, the total angular
momentum vector remains fixed in
space without an external field,
but if coupled to a field aligned
with the polar axis the component
m remains fixed while the compo-
nent [VI(L + 1)-mZ] precesses about
the axis.

Figure 4.3.- Rotator angular momentum and its projections on an axis of
symmetry.

The quantum partition function for a diatomic rotator is thus

Q = ; (20 + )¢~ (B#1)8p/7 (4.37a)
=0

In the limit as T becomes large compared with 6,, the summation can be
approximated by the integral

o T f 2 + 1)L DT 4 rr- . (4.37b)
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which gives the same result as the classical model. At lower temperatures,
the summation in equatior (4.37a) should be performed for the first few terms,
then the remaining series :an be approximated with an integral

a, = zﬁ (21 + 1)e~ P18, 31';e-n(n+1)9,,,"f (4.37¢)
=0

At very high temperatures, the rigid-rotator partition function is
proportional to T without limit, as given by equation (4.37b). This behav-
ior is due to the infinite number of energy levels t} :t exist for the rigid
rotator. A qualitatively more realistic model of rea. molecules would trun-
cate the rigid-rotator levels at the dissociation limit D, in which case the
maximum rotational quantum number 1I' is approximately given by

(L +1) = 7(% (4.33a)

The integral approximation to the partition function sum then approaches a
finite limit:

Zl
I (2L + l)a'z(z”)e/T dl = % (1 - e-D/kT)kae_ (4.37d)
[+]

This limit is large - the order of 10“ for many diatomic molecules.

In practice, a correction for truncation of the rotational energy levels
is normally unnecessary. Corrections for centrifugal stretching and vibration-
rotation coupling (considered later) are iar larger at temperatures of inter-
est. Molecules are normally all dissociated at temperatures the order of D/k,
where the asymptotic limit on rotational partition must be considered. How-
ever, the truncated-rotator model does illustrate the qualitative concept that
a finite limit to the partition function does exist.

In spectroscopic notation, the observed rotaticnal energy levels are
expressed as

Ep= BJ(J + 1) (4.38)
whera J replaces the rotational quantum number I, and B is the rotational
energy constant. The rotational constants are usually listed in wave numbers;
the energy is then in units of he. The constant B in wave numbers is
related tc the moment of inertia I and the characteristic temperature 6p
by

ko,
B ™ Fwel = Fo (4.39)

A few typical values of B and 8,, for diatomic molecules are given in
table 4.1. Excep. for H, and Dy, the values of 6, are well below the
critical temperatu: - where gas phase cannot exist. Since the classical
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TABLE 4.1.- ROTATIONAL CONSTANTS FOR DIATOMIC MOLECULES2

B b s d

Molecule or radical | B, cm~! 0p, °K ro,x
Hy 59.37 85.42 | 0.7506
HD 44.15 63.52 .7539
D2 29.93 43.06 .7477
02 1.4378 2.069 1.2107
No 2.001 2.879 1.0968
NO 1.6957 2.440 1.1538
Cco 1.9227 2.766 1.1308
Cil, 0.2430 0.3496 1.9918
Br, .08077 .1162 2.2856
I, .03730 .0537 | 2.6687
OH 18.514 26.64 0.9799
CH 14.190 20.42 1.1303
HCl 10.440 15.02 1.2838
HBr 8.360 12.03 1.4233

dMolecules are assumed to be composed of the most common atomic isotopes and
the constants given obtain for the ground vibrational state (i.e., B, and r,
in spectroscopic notation), since these are appropriate to the calculation of
the partition function where energies are measured relative to the ground
state. The spectroscopic values By and r, which obtain at the potential
minimums are slightly different due to rotation-vibration coupling as dis-
cussed in Chapter S. B, =B, -a,/2, where ag is the rotation-vibration
coupling constant.

approximations for rotational partition function are adequate whenever

T >> 6y, the more exact quantum solutions must be considered for gas phase
only for H, and D,. Even then, the classical approximation is adequate at
normal temperatures and above. The interatomic distance r,= (I/u)!/2 is
also listed. Note that the values of 7, are all the order of 1 K. This is
a consequence of the fact that outer electrun orbitals are about the same size
for all atoms, so the binding electron interactions occur at about the same
internuclear distance.

4.6 MOLECULAR SYMMETRY EFFECTS

One additional factor must be included in the partition function, the
symmetry number o, which equals unity for diatomic molecules when the two
atoms in the molecule are different (as with NO, CO, HD, or 08 017, e. g )} and
equals two when the particles are 1nd1st1ngu15hab1e (as with N1% N1Y

016 016, e.g.). The complete rotational partition function is, in the limit
T >> 64,
-._'T__ )
@ = (4.40)

Classically, we say the symmetry number occurs because the same observ-
able state occurs when the angle of a homonuclear diatomic rotator changes by
m, whereas the angle must change by 2m for the heteronuclear diatomic rotator
to arrive at the same observable state, Thus, half the angular range must be
excluded from the phase integral for the hcemonuclear molecule.

In quantum mechanics, we find from the Pauli exclusion principle (dis-
cussed in the next section) that the wave function of any system of particles
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must be antiasymmetric with respect to the exchange of any two fundamental
particles - that is, the wave function must change sign when two such parti-
cles exchange quantum states. Note that exchanging quantum state involves
exchanging position as well as exchanging energy level since the uncertainty
principle divides momentum-coordinate space into cells of different quantum
state. Thus the rotation of a homonuclear diatomic molecule through the angle
® exchanges two like nuclei composed of fundamental particles - protons and
neutrons. These nuclei possess both spin and orbital momentum. For a spin
state of given symmetry, the orbital momentum must have a given symmetry in
accord with the Pauli principle; even orbital symmetry corresponds to even-
numbered 7 integers and odd orbital symemtry corresponds to odd 7 integers
(note the symmetry of the associated Legendre polynomials listed in eq. (4.35)).
Thus only half the rotational states are available to a homonuclear diatomic
molecule in a given spin state. Even and odd rotational states of such mole-
cules are thus like two separate species, and the partition function for each
species includes a summation over half the total number of rotational levels.

e

The reader is aware that collisions of molecules with other gas particles,
with photons, or with the walls of a containing vessel can produce perturba-
tions that change the quantum state of the molecule. These perturbations have
a negligible effect on nuclear spin states of the molecule, however, because
spin is influenced mainly by magnetic forces that are relatively weak compared
with the electrostatic forces that perturb molecules during collision and also
because the different spin states are widely separated in energy, with the
result that collision perturbations are unlikely to cause transitions in spin
state. Thus once a homonuclear diatomic molecule finds itself in a rotational
state of one symmetry, it will maintain that symmetry for most practical pur-
poses. Rotational states with even-numbered I will make transitions only to
other states with even-numbered 1, states with odd-numbered 7 only to other
states with odd-numbered 7. Of course, eventually some rare collision event
or photon absorption will produce an excited state in which both nuclear spin
and rotational symmetries change, leaving the molecule in a new steady state
that satisfies the Pauli principle. Thus a mechanism exists for eventually
establishing complete equilibrium between even and odd rotational states.
However, these events may be so rare that the homonuclear diatomic gas is
frozen, for most practical purposes, in whatever nonequilibrium ratio between
even and odd states which may be imposed as an initial condition. .

To understand the effects of nuclear symmetry in a more fundamental way,
the Pauli principle of quantum mechanics and the effects of nuclear spin are
considered in more detail in the following sections.

4.7 THE PAULI PRINCIPLE

To state the Pauli principle, the definition of a fundamental particle
should first be treated in more detail. A fundamental particle is defined to
be an indivisible atomic particle with exactly 1/2 quantum unit of internal
angular momentum (called a unit of spin). These may include neutriios and
mesons, for example, but for present purposes, we consider only three funda-
mental particles: electrons, protons, and neutrons. Atomic nuclei are
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considered as aggregates of protons and neutrons; molecules consist of a group
of such nuclei bound in an electrostatic potential-well resulting from their
own charges and the charges of an appropriate number of orbiting electronms.
Any particle with more or less that one spin unit is automatically a complex
particle; a particle with one spin unit may be a fundamental particle, or a
complex particle composed of an odd number of fundamental particles in which
all spins are paired except one. Spin states are considered in more detail in
section 4.8; for the present, we note that just two spin states are observed,
which result in zero spin when paired. Accordinglv, particles composed of an
even number of fundamental particles must have an even integer number of spin
momentum units - such particles are called bosons. Particles composed of an
odd number of fundamental particles must have an odd number of spin momentum
units - such particles are called fermions. Of course, the fundamental parti-
cles themselves are fermions also.

With this introduction to the definition of fundamental particles, the
Pauli principle may be stated simply: no two identical fundamental particles
ecan exist in the same quantum state. The principle is merely an empirical
statement that generalizes all presently known observed facts; it is not
derivable from more fundamental principles as far as we know.

A somewhat more general statement of the Pauli principle, which calls
attention to the mathematical symmetry relations implied in the elementary
statement above, is useful: generalized Pauli principle - the steady-state
wave function of any system of fundamental particles must be antisymmetric.
Recall that antisymmetry means a change in sign of the wave function when any
two findamental particles are interchanged. The value of yy*, or the proba-
bility, is unchanged by this operation, of course. Sometimes the Pauli prin-
ciple is stated in a slightly different but completely equivalent way: the
steady-state wave function cf any system of particles must be antisymmetric
with respect to the exchange of any two identical fermions and symmetric with
respect to the exchange of any two identical bosons. The reader can readily
see that this statement of the principle follows from the generalized state-
ment given above and from the definitions of fundamental particles, fermions,
and bosons. The elementary statement of the principle is also seen to apply
as follows:

Consider two independent identical particles 1 and 2, with quantum states
having the wave functions wu; and up available to them. A total wave func-
tion for the system of two particles can be constructed:

$(1,2) = u3(1)uz(2) (4.41)
which describes particle 1 in state u; and particle 2 in state up. However,
this function does not satisfy the generalized Pauli principle because gener-
ally when the particles are interchanged,

u(Duz(2) # -u3(2Jua(1)
However, an antisymmetric wave function that satisfies the Pauli principle is

¥o(1,2) = uy (Duz2(2) - u3(2)uz(1) (4.42a)
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Note that if u; = u,, the total wave function vanishes. In other words, the
probability is zero that the two particles occupy the same quantum state. On
the other hand, if symmetrical wave functions such as

Vg (1,2) = uy (Nua(2) + uy(2)uz(1) (4.42b)

were allowed, the wave function remains finite when wu; = uy, and two or more
identical particles could then occupy the same quantum state with finite proba-
bility. This contradicts all experimental evidence: for example, all the elec-
trons in a multi-electron atom would occupy the same ground state electronic
level at low temperature, and the structure of electron configurations leading
to the periodic system of elements would be destroyed.

In the more general case when 7 identical fundamental particles have
the independent wave functions uy, #3, . . ., u, available to them, the anti-
symmetric wave function for the total system can be expressed as a determinant:

u (1) us (1) e w, (1)
uy (2) us (2) .o Uy, (2)

Va(1,2,. . .m) = | (4.42¢)
uy () us (n) .- .. Uy (n)

Exchanging any two particles is equivalent to interchanging two rows, which,
of course, changes the sign of the determinant. The total wave function may
contain factors that are symmetric, but it must contain an odd number of
antisymmetric factors to satisfy the Pauli principle.

For the homonuclear diatomic rotator, exchanging the two atoms is
equivalent to reversing the radius vector 7, (fig. (4.2)), which in polar
coordinates is produced by a change in 6 of = radians with no change in ¢.
The spherical harmonic functions Y(8,¢)(eq. (4.34)) are even functions of 6
when 7 1is even and odd functions of 6 when I is odd. To select the
appropriate rotational wave function, the symmetry properties associated with
nuclear spin must be considered.

4.8 NUCLEAR SPIN

Spin is generally conceded to be a purely quantum phenomenon that has no
classical analog (ref. 3). For example, Dirac finds that the relativistic
quantum treatment of the electron leads to the two observed spin states of the
electron in a natural way, without the need for additional postulates (ref. 4).
However, this treatment is so involved that spin is usually explained nonrela-
tivistically as an unknown internal degree of freedom associated with the
internal angular momentum of fundamental particles. Such particles must have
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; an angular momentum of v3 %/2 and a degeneracy of 2 to agree with observed ;

facts - such as the measured magnetic moments of protons and electrons, the

observed periodic structure of the table of elements, and the fine structure

of optical spectra. Accordingly, a spin quantum number 8 = 1/2 is assigned 3
to the irternal state of these fundamental particles; the angular momentum is } «?
then va(+ + 1) # and the degeneracy is 28 + 1, as required. The orthogonal- ;
ity and s;ymmetry properties of the spin wave functions may be deduced from the ;
! commut.:'ion rules that exist for angular momentum operators in general, with- -
‘ out specifying in analytic detail what those functions are (ref. 1). ; iy

1 Actually, spin need not be treated as a mere formalism. Although the
quantitative analysis is very involved, the spin concept is readily appreci- .
, ated as a direct consequence of the uncertainty principle. A moving particle
P his an vncertainty in position approximately equal to the De-Broglie wave-

- length :ilong the direction of the observed momentum vector, but the same par- ‘ ;
: ticle h:s uncertainty in position and momentum along the other two directions )
: in spac: as well, If the situation is described in cylindrical coordinates, L
o this means an uncertainty in the r and 6 coordinates and their derivatives : o
about the momentum vector. For r as small as possible, the uncertainty is
described by a wave function with either *1/2 quantum units of angular momen-
tum. The classical analog would describe a particle that corkscrews either .

o~

3‘ i clockwise or counterclockwise about the observed momentum vector, with a cir- 4
o cular component of velocity e, which adds to the observed linear velocity K
; | (see, e.g., Huang's discussion in ref. 5 of the zitterbewegung of the Dirac N
g it elec.ron). If the particle is charged, a magnetic moment results, of course. ¢
£ A sonewhat simpler semiclassical model treats spin as the quantized rotations §

of particles with very small but finite moments of inertia, as though the "
part:cle consisted of 'smeared out" distributions of mass. Such a model gives :
many jualitative similarities to the actual spin states and therefore has some ;
heuristic value, whatever its other shortcomings.

e an

' The two spin wave functions for s = 1/2 can be symbolically designated
as a and 3, without specifying exactly what these functions are. However, ]
they must be orthogonal and normalized with respect to integration over some s
unspecified spin variable 1, representing the spin degree of freedom: :

i | fo2 dv = f2 dr =1 (4.43a) ,
| fag dr = 0 (4.43b) |
: | :
v ? Two identic:! particles (1 and 2) can exist in one antisymmetric spin ‘;’%;i
s g function: i
- | 1 .
Sq = 7= [2(B(2) - a()B8(1)] (4.44a)
? ! or in 2.y of three symmetric spin functions: ’
| Sg = a(1)a(2) (4.44b) "
7 H i
; S5 = — [a(1)B(2) + a(2)B(1)] (4.44c) !
‘ V2

Sg = B(1)8(2) (4.44d) |
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The antisymmetric function (eq. (4.44a)) represent the case when the spins are o
opposed, the total spin quantum number S- and total spin angular momentum are: R
both zero, and the degeneracy (25 + 1) = 1, The symmetric spin functions
(eqs. (4.44b,c,d)) represent the case when the spins are additive, the total
spin quantum number S = 1, the total spin angular momentum is v2 A, and the
degeneracy (25 + 1) = 3. These various spin configurations are diagrammed in .

figure 4.4.
2

2
51 ISil=/3t/2
%-- HE JIhr2 #\\\\ " 2
y=arctan N
y=arctan jz ) y ,}_ o,
0 /,, ls. +SZI‘M - E

ISy+Sg=0 Al el
/34 Al 2 |S2l/3/2
[Sopv/3N 72 2 -

(a) Antisymmetric spin configuration (b) Symmetric spin configuration v
Sg=a(l1)B(2) - a(2)B(1); total Sg=a(1)8(2) +a(2)8(1); total spin
spin S = 0. ‘ S = VY2 A, with zero projection on
: the polar axis.

F 4

(c) Symmetric spin configuration (d) Symmetric spin configuration
Sg=a(1)a(2); total spin S=2 A, Sg =B8(1)B(2); total spin S=/2Z &, /!
with projection % on polar axis; with projection -% on polar axis; i
Sy 1is shown in the plane of the S, 1is shown in the plane of the
figure, but both S, and S;+ 35, figure and S; and S; +S; both lie
lie out of this plane. out of this plane.

Figure 4.4.- Spin momentum and its projections on an axis of symmetry.
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Verify that the two particle spin functions in equations (4.44) are normalized and are all

Problem 4.5:
another, if the individual spin functions a and 8 are normalized and orthogonal as defined in

orthogonal to one
equations (4.43).

The notation used for the spin function (4.44c) might, at first glance, suggest that the spins are opposed.
However, it means only that the projections of the two spins on a polar axis are opposed (fig. (4.4b)). The
paired spin states in equations (4.44c and d) have additive projections on the polar axis and lie in a plane such
that each spin projection is A/2 and the total spin projection is % on the polar axis (fig. (4.4c)). Notethat
the expression "parallel spin" means that the spins reinforce one another, not that they are truly parallel in the

classical sense.

Problem 4.6: The following problem is designed to convey some heuristic notions about spin with a model that
is nonrelativistic, but where the maximum velocity is taken to be the velocity of light and the Einstein equiva-
lence between energy and mass is used. Keep in mind, however, that spin should properly be analyzed by use of the

general relativistic relations of accelerated motion.

Consider a hypothetical, nonrelativistic particle with finite moment of inertia. According to fundamental
quantum principles of angular momentum operators, such particles can exist (ref. 1) in states with angular momentum

{a(s + 1)]}/2A, which have projections imh on an axis of symmetry, where m % s and &n is an integer (as
required by the size of the quantum cell in phase space given by the uncertainty principle). This relation is
satisfied if & takes either the integer values 0, 1, 2, 3, . . ., etc., or the half-integer values 1/2, 3/2, §/2,
. + ., etc. The only observed spin state of fundamental particles is & = 1/2, and excited spin states are not

observed.

When the particle is following a trajectory determined by some potential field, the tangent to the trajectory
becomes the axis of symmetry and the wave function in this coordinate has the form atkz (discussed in ch. 3).
However, the particle is also localized in the remaining ciordinates, chosun to be the cylindrical coordinates »r
and ¢ measured relative to the trajectory line. According to the uncertainty principle, the maximum localization
(i.e., the smallest average value of r) occurs with the maximum velocity (i.e., the velocity of light). Visualize
the particie then with an angular momentum about a point that corresponds to a circular motion with the velocity of
light and with a slow drift component along the linear trajectory that corresponds to the linear momentum .

In terms of a quantum wave function, consider solutions to the Schroedinger equation with m = 1/2. Show

that, in cylindrical coordinates,

= ei‘iO/Z (4.453)

satisfies the Schoedinger equation and results in a component of angular momentum along the polar axis

L hde _h
Py T ds 2

The wave function in equation (4.45a) actually corresponds to a traveling wave with momentum #/2 circling
the polar axis with wavelength 4nr,, where r, is some average radial distance. In steady state, the hypothet-
ical particle with 2 = 1/2 is represented by a standing wave formed from linear combinations of the wave

functions given by equation (4.45a)
2ocos & Login 8
$ = 7 eo8 5 , = sin (4.45b)
Show that these spin functions are normalized and orthogonal to one another as required. These functions are not
single-valued, of course, but the probability 42 is. Note that the probability is unity that the particle is in

one or the other of the two spin states.

The spin wave function might include some function of the radial distance also, but, for present purposes, it
is considered to be a delta function 6(r,) that represents a thin shell distribution at average distance r,.
To estimate the size of r,, assume that the rest mass of the hypothetical particle equals the spin energy:
2
2 f
met =2 g(g + 1) —
( ) 2mr 2
Find the moment of inertia of such a particle having 1 atomic unit mass (1.66x10°2“ gm). Find the radius r, of
such a particle if the mass is uniformly distributed in a spherical shell and compare this with the effective
radius of protons, known from high-energy scattering measurements to be the order of 10 3 cm.

Sometimes it has been suggested that rest mass might be related to the energy of a surface charge of ) esu
placed on a spherical particle. Show that such a charge energy, e?/ry, is negligible compared with the spin energy

of the above particle.

Show that if an excited state with spin & = 3/2 existed without a change in moment of inertia, this would be
the order of 107 eV above the ground state. For most practical purposes, such a high energy state would not be
excited and would remain uncbserved. Show that the surface velocity at the equator of the above particles is rela-
tivistic in the ground state, so that higher states would correspond to super-relativistic spin velocities and
would presumably he unohservable for this reason also. Thus, the maximum possible localization of the spinning
sphere, that is, the minimum size r,, just corresponds to the maximum possible angular momentum and energy for the
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particle if the velocity of light is assumed to be limiting. Of course, a precise analysis of real spinning parti-
cles at these spin velocities would require that mass, size, and angular frequency all be transformed in accord
with the general relotivity of accelcrated motion.

In accord with common usage, spin is hereafter described as having the - 5
value &, the spin quantum number, but it should be clearly understood that :
this means a total spin momentum of va(s + 1) .

4.9 ORTHO- AND PARA-SPIN STATES OF HOMONUCLEAR DIATOMIC MOLECULES !

Generally, nuclei are a collection of fundamental particles or nucleons §
(protons and neutrons), all having intrinsic spin & = 1/2. The total spin :
of the nucleus is the algebraic sum of the individual spins

o= 2s8; (4.46) o
r :

A collection of odd-numbered nucleons must have an odd number of half spin
units (s = 1/2, 3/2, 5/2, . . .) while an even number of nucleons must have an
integral number of spin units (¢ = 0, 1, 2, 3, . . .). Nuclei with half inte-
ger spin are called fermions; they obey Fermi-Dirac statistics because the
wave function for a collection of fermions must be antisymmetric with respect
to exchange of any two identical fermions, in accord with the Pauli principle.
Thus, no two fermions can occupy the same quantum state or cell in phase space. E
(Examples of fermions are H!, H3, He3, C13, and N15.)

Nuclei composed of an even number of nucleons, and thus with an integer
number of spin units, are called bosons; they obey Bose-Einstein statistics
because the wave function for a collection of bosons must be symmetric with
exchange of any two identical bosons, again in accord with the Pauli principle.
(Each boson pair exchanged means exchange of an even number of nucleons, which
leaves the wave function unchanged in sign.) Thus, two or more bosons can
occupy the same quantum state. (Examples of bosons are H2, He", C!2, N%, and
0'°.)

A diatomic rotator composed of two identical fermions must have the anti-
symmetric spin function (known as the parg-state) when the rotational quantum
number I is even, but must have a symmetric spin function (known as the
o.'‘ho-state) when I is odd. Then the spin-orbit wave function of the nuclei f<
wiil be antisymmetric as required by the Pauli principle for exchange of o
fermions. On the other hand, diatomic rotators composed of two identical '
bosons must be in the ortho-spin state when 7 is even, and in the para-spin
state when I is odd in order that the spin-orbit wave function be symmetric
as required by the Pauli principle for exchange of bosons.

Now consider the H, molecule. The H nucleus is a proton with spin 1/2.
The para-spin function, corresponding to opposed spins with total spin 0, has f
a degeneracy of 1; the ortho-spin function, corresponding to parallel spins
with a total spin of 1, has a degeneracy of 3. The equilibrium ratio of para-
to ortho-H, is the ratio of the even and odd rotational state partition func-
tions weighted with the appropriate nuclear spin degeneracy:
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-1(1+1)6p/T
(22 + 1)e r
H, (para) Qp(even 1) Z-o;;;u--- (4.47;

F (ortho) - 3q,(0dd 1) 5 > e e LA /T
1=1,3,5...

At high temperature, the two partition functions both approach T/26, and the
ratio of para- to ortho-Hy approaches 1/3.

In the more general case, the atoms of a homonuclear diatomic molecule
have spin &, which may be any number of half-integer units. The total
nuclear spin degeneracy (ref. 2) is

g= (28 +1)2 (4.48a)

corresponding to the fact that the spin of one atom can be oriented (28 + 1)
different ways in space, while the spin of the second atom can couple to any
one of these in (28 + 1) different ways. The total spin projection on the
molecular axis o¢ thus can take all the integral values from 28 to -28. The
even functions are those for which o takes the values (ref. 2)

c= 28, 28 - 2, 28 - 4, etc. (4.49a)
and the odd functions those for which o becomes
o=28-1, 28 - 3, etc. (4.49b)

There are & + 1 different combinations for the even functions, each capable
of (28 + 1) different orientations in space. Thus, the degeneracy of ortho-
states is

gg = (8 + 1)(28 + 1) (4.48b)

Similarly, there are & different odd states, again each with (28 + 1)
orientations in space, so the degeneracy of para-states is

g, = 8(28 +1) (4.48c)

Problem 4.7: Show that if the nuclear spin of the atoms in a homonuclear diatomic molecule is &, the total
number of ortho-spin functions given by equation (4.49a) iz the sum

28-1
T [2(28 -~ m) + 1} = (8 » 1)(28 + 1)
ne0,2,4,...
when 28 1is odd,and the sum
28
[2(28 - n) + 1] = (8 + 1)(28 + 1)
naQ,2,4,...

when 28 is even. Also show that the total number of para-spin functions given by equation (4.49b) is the result
given by equation (4.48¢c) in either case.

Next consider the deuterium molecule D,. The total spin of the D atom
can be 0, but this is an excited state. The ground state of the D atom is
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observed to have spin & = 1. Thus, for the D, molecule there are six ortho-
spin states (eq. (4.48b)) and three para-spin states (eq. (4.48c)). The D
atom is a boson, so the total rotational wave function of D; must be symmetric.
This means that the six ortho-spin states are associated with even orbital
momentum states (L = 0, 2, 4, . . .) and three para-spin states are associated
with odd orbital momentum states (Z = 1, 3, 5, . . .). The equilibrium ratio
of ortho- to para-D, is thus

D, (ortho)  6Qn(even 1) 2
Dy(para) ~ 3Qn(odd 1) r>>p,,

(4.47a)

The normal oxygen atom 016 is ah interesting boson because its ground
state has zero spin. Thus, for the 036 molecule, the nuclear spin function is
ortho with a degeneracy of 1 and the rotational wave function must then be
symmetric for the total nuclear wave function to be s~ etric. This means
that only even-numbered orbital angular momentum states are allowed; this is
observed spectroscopically in that every other line in the rotational band
structure is missing. On the other hand, the missing lines appear for 016-017
spectra. On a classical basis, one would hardly expect this small difference
in nuclear mass to result in such a total effect, and the observed phenomenon
constitutes a striking example of the importance of quantum effects. The
spectra of other molecules, such as N%“, also show quantum effects, even where
the nuclear spin is not zero; the lines of the rotational band spectra have
alternating intensities in proportion to the ratio of para/ortho species. On
the other hand, N1“N!5 has equal strength rotational lines.

Collisions can cause conversions between ortho- and para-states, but
these occur infrequently because the spins are so weakly coupled to the motion
of the nuclei. Transitions are more common in the presence of strong inhomo-
geneous magnetic fields, or where a paramagnetic collision partner such as 0;
or NO is available to function as a catalyst. Conversions are also produced
by dissociation. When the dissociated atoms recombine in the gas, they do so
in proportion to the statistical weights of ortho- and para-states. Rela-
tively pure para-H; can be prepared in Hp cooled to near absolute zero temper-
ature. All the para-molecules arrive at the state . = 0, and all the
ortho-molecules arrive at the state I = 1. A catalyst is provided to promote
transitions to the lower-lying para-state and is subsequently removed. The
pure para-H, can then be heated to normal temperatures with essentially no con-
version to the ortho-states. Incidentally, ortho-para effects occur wherever
rotations can exchange similar atoms, such as in Hy0 or CH, molecules as well.

4.10 NUCLEAR SPIN ENTROPY

Tha total partition function of a diatomic rotator should, strictly
speaking, include the nuclear spin degeneracy. For the homonuclear diatomic
molecule of bosons,
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Qp= (8 + 1)(28 + 1) Z 21 + 1)e"E(F+1)eA/T

1=0,2,4,... 4/

Ao

+ 8(28 + 1) Z (21 + 1)e~t(F*1)8/T (4.50a)
1=1,3,5,...

PRI

-

; while a similar expression gives the partition function for a homonuclear
: diatomic molecule of fermions as

B e TS

c Qp = 8(28 + 1) E (21 + 1e L (T1)e/T

1=0,2,b,...

-1(1+1)0,/T

+(8 + 1)(28 + 1) Z 2L + e (4.50b) |

1=1,3,5,...

LN

In the limit T >> 0,, all the summations above approach TI/28, and g

T
— (28 + 1)% = 4,51

which is the same as it was before spin was considered except for the factor
(28 + 1)2, A similar factor (28 + 1)(28' + 1) appears for heteronuclear dia- :
tomic molecules (ref. 2), where 8 and 8' are the spins of the two atoms 3
involved. Normally, the symmetry factor 1/2 is retained to differentiate the '
homonuclear and heteronuclear cases, but the nuclear spin degeneracies are
ignored because spin does not change at practical temperatures and the degen-
eracy is constant (the factor (28 + 1)(28' + 1) is actually a nuclear spin
partition function at the limit where temperature is negligible). This con-
stant factor does not influence any of the thermodynamic properties except to 3
change the reference level of entropy and the free energies. For example !
(see problem 1.4, ch. 1),

. a__z;a_e) Q ,
i S RT 3T b + R In N (4.52) /v

In this case, the nuclear spin degeneracy contributes a constant

R In[(28 + 1)(28' + 1)] because of the second term on the right in equa-
tion (4.52) - referred to as the nuclear spin entropy. The entropy disregard- "
ing nuclear spin is called the virtual or practical entropy. For homonuclear o
diatomic molecules, the subtraction of nuclear spin entropy is applicable only ' ;
if the ortho/para ratio equals its limiting high-temperature value. Otherwise, i .
the two sums in equation (4.50) do not approach the same value as half the i
single sum over all states. However, for practical purposes, one can ignore
auclear spin entrony, except for H, and D, below about 200° K. ]
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Usually, atoms in the ground state have low values of nuclear spin, as
spins tend to pair up in the lower energy levels, somewhat similar to electron
pairing in atomic and molecular structure. A short list of nuclear spins in
ground state atoms is given in table 4.2. -

TABLE 4.2.- NUCLEAR SPINS OF GROUND STATE PARTICLES

Particle |e|n|H!| D2| H3| Cc12 |13 NI¥| N15S| 016 {Na [AZ] CZ
1[1] 1 1 1 1 315 6
Spin 7|3z %3]l z]9|3]|35]|3

4.11 POLYATOMIC MOLECULE ROTATORS

Any linear molecule is a two-dimensional rotator with two equal and
independent muments of inertia about the center of mass and a zero moment
about the molecular axis. Then the results are the same as for the diatomic
rotator. However, in general, polyatomic molecules have finite moments of
inertia in all directions. As for any i1°.gid body, these moments have a vector
magnitude that lies along the surface of an ellipsoid. The three perpendic-
ular axes of the ellipsoid, ralled the principal moments of inertia, are
usually indexed in the order of increasing moments (I; < I; < I3), sometimes
in reverse order. The first convention is followed here.

The derivation of the rotational partition function for an arbitrary
three-dimensional body is a somewhat involved but useful exercise, so it is
sketched here. Llet ¢q;, g2, and q3 be the axes of the principal moments of

inertia (I}, Iz, and I3). The kinetic energy of the rotator may be expressed
as

w2  Towp?  Tawg?
- ‘2‘ . 2:2 . 323 (4.53)

where w;, wp, and w3 are the angular velocities of spin about axes q,, q,,
and q3, Tespectively. The kinetic energy is expressed in terms of the
Eulerian angles 0, ¢, and ¢ shown in figure 4.5, which describe the orienta-
tion of the rotator with respect to the =2, y, 3 coordinates of space.

Note that ¢ is the angular velocity about the z axis, ¢ is the
angular velocity about the ¢, axis, and 6 is the angular velocity about
the nodal line. Take the component of these three independent angular veloc-
ity vectors along the g;, q2, and g3 axes and sum like components to find

wy =y 8in 6 8in ¢ + 8 cos ¢ (4.54)
wy = i ain 8 cos ¢ - 0 8in ¢ (4.55)
w3 =y cos B + ¢ (4.56)
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Figure 4.5.- Eulerian angles that define the position of the three principal
axes (41, q2, and q3) for the moment of inertia of the rigid body ellipsoid .~
! in =z, y, and 2 space; @ is the angle between q; and the z axis. The
{ nodal line is the perpendicular to g, which lies in the z-y plane, and
¥ is the angle between the nodal line and the =z axis. The are symbol-
‘o, izes the plane orthogonal to g¢j;; that is, the plane defined by the axes
q, and g,; ¢ is the angle between ¢g; and the nodal line. Note that some
authors use thz notation a for ¢, 8 %or 8, and vy for ¢, and also some-

times use a left-handed coordinate system in which the x and y axes are
interchanged.

Then the total kinetic energy expressed in terms of the Eulerian angles and
their derivatives is

T = %} (V2 8in%0 8in2¢ + 2yb aind 8ind cosd + 82 cos?s)
I Ld ’ . & L4
+ 7% (¥2 8in20 cos?¢p - 2y8 8ind sing cosd + 02 sin2¢)
I . .o .
+ 5 (V% 00820 + 204 cosd + ¢2) (4.57) .

Since the potential is zero, tne kinetic energy expressed in these units is

the Lagrangian function L(qi,bi). The generalized momenta p; conjugate to
the coordinates q; are, by definition,

3L(94,92)  ar ‘
pi = ——a—d;-—— = W‘E (4.58) ’

Thus the generalized momenta conjugate to the three Fulerian angles are
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Py * I () 8in2 0 ain* ¢ + 6 8in 6 ain ¢ cor §)
+Io( 8in2 0 cos? ¢ - & 8in © 8in ¢ cos ¢) (

+I3(¥ cos? o + § cos 6) (4.59)

pe-n(i' 8in & 8in ¢ cos ¢ + & cos? §) i
-I,(V 8in 6 8in ¢ cos ¢ - b 8in? §) (4.60)

Py = I3(¥ cos 8 + §) (4.61)

Now the Hamiltonian for a three-dimensional rigid rotator in temms of the
Eulerian angles and their conjugate angular momenta can bec written as

_%‘,_i [Pe szna;ncaa g Py~ Py co8 e)]2

ain? ¢ _co8 ¢ 2 .
oL, [ Py - oin e atn § Py~ Py cov ‘”]

+ % (4.62a)

which can be rearranged somewhat to give:

2
(,mz coaz )pe+_L_L)azn¢coa¢(pw-p¢aoae)
T Iz sin 6 (81'.712 ¢ . cog? !)
I I
- cos 8)+
" 1 ®y - By : p" (4.62b)
21,1, sin? o (8in® ¢ coazi) 20, .
Iz I

This arrangement makes the integrations more straightforward in the phase

intergral:
@ g0 gD T 427 @27
w3 f f f .’; j; .‘; &M dpg dpy dp, d® dé¢ dv (4.63) |
Note that
®  a(x+b)? ® ax?2  ml/2 4
Le dx-Le - () .
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Integration over Pg yields a factor

s 2 2 4\-1/2
8in eo8* ¢ 1/2
( I, 71 ) (2nkT)

Similar integration next over Py yields the factor

172
Pand 2
stnc ¢ . cosc ¢ s 172
T; + T ) 8in 0(2nkTI I,)

Finally, integration over Py yields the factor
(2nkTI3)! 2

Integration of the remaining integrand, sin 6, over all angles 6, ¢, and ¥
yields 812, Thus, for three-dimensional rotators, the partition function is

2 372
Q= f% (2nk) ¥/ 2 (11 1,13) V2 = %(FT;) (4.64)

where the symmetry number o is again introduced to account for the duplica-
tion in the observably different volume of phase space that occurs when the
orientation vector of molecules with like atoms is in.egrated over all 4«
steradians. The symmetry numbers for some common polyatomic molecules are
listed in table 4.3, for excnple. The most symmetrical molecule in this table
is methane with o = 12. Even greater symmetry is possible, sulfurhexafloride,
SFg, for example, has a symmetry number o = 24. Herzberg (ref. 6) lists a
vable of symmetry numbers by point groups, which is a system designating the
symmetry of structures according to the mathematics of group theory. The
point group to which individual molecules belong is then given at various
places in Herzberg's text where these molecules are discussed. The symmetry
introduced when some of the atoms are identical produces degeneracy and limits
the number of rotational energy levels observed; the more unsymmetrical the
molecule, the more levels are observed. Although symmetry effects change the
absolute level of entropy, they do not affect the contribution of rotational
motions to the equilibrium energy or specific heat per mol.

The characteristic rotational temperature defined by equation (4.64) is

#2

8, = 4.65
P ok(wIyIpI3)l/3 (4.65)

A quantity that is normally the order of 10° K or less.

Table 4.3 also gives values of rotatiunal constants, bond angles, and
bond lengths (ref. 7) for the polyatomic molecules listed. Just as for
Table 4.1, the molecules are assumed to be composed of the mest common atomic
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TABLE 4.3.- ROTATIONAL CONSTANTS FOR SOME POLYATOMIC MOLECULES ; p
. -1 Interatomic | Symmetry f
Molecule Rotational constant, cm Bond aggle, deg distance number o
A B c @ d, E o 4
0-C-0 0.3902 180 1.162 2 .
S-C-§ .1092 180 1.554 (C-H) 2 i
H-C-N 1.478 180 1.064 (C-N) 1 *
N-N-0 0.4190 180 1.126 (N-N) 1 .
1.191(N-0) .
H”ON\}l 27.88 | 14.51 9.285 105.0 0.9568 2 %
070Ny | 15.38 | 7.25 | 4.835 105.0 .956¢8 2 g
g SNy | 1037 | s.901 | 4.732 92.3 1.334 2 4
0" o 3.553| 0.4453| 0.3947 | 116.8 1.278 2
Ol,s\"o 2.024 .3442 .2935 119.6 1.433 2
H-C-C-H 1.177 180 1.208(C-C) 2
1.058(C-H)
H:C_o 9.410 1.295 1.134 118 (HCH) 1.12(C-H) 2
H
1.21(C-0)
NHj3 9.94 9.94 6.24 106. 8 (HNH) 1.014(N-H) 3 i
CHy 5.249 108. 0 (HCH) 1.093(C-H) 12
CH;3CZ 5.097 | 0.4434] 0.4434 110.5(HCH) 1.781(C-C1) 3
1.113(C-H) :
isotopes, and the constants given obtain for the ground vibrational state.
Values. for other isotope configurations can also be found in reference 7, as s
well as some values of Bg, ag, and dp which obtain at the potential minimums. | w
4.12 ROTATIONAL ENERGY LEVELS OF NONLINEAR MOLECULES

The classical approximation for the rotational partition function is
usually adequate for polyatomic molecules, and this requires only knowledge of
the three moments of inertia, I;, I,, and I3. However, these three moments
must be deduced from the spacing of rotational energy levels observed by the
spectroscopist. In the general case, the three moments are all unequal, the
molecule behaves as an asymmetric top, and the rotational energy levels follow
a very complex pattern. Deducing the moments is an involved process in this
case, and this specialized topic is not pursued here. However, many molecules
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possess considerable symmetry and can sometimes be treated exactly, or
approximately, as symmetric tops, in which case the rotational energy levels
follow much simpler patterns. The symmetric top results also serve to give a
qualitative concept of the relations that exist between the rotational energy
levels and the moments of inertia in the more general case of the asymmetric

top.

The classical energy of the rigid rotator given by equation (4.53), but : '_;‘;
P expressed in angular momentum coordinates, is »* }
£ P2 B P2
; Ep = 3T; + 3T, + 3T (4.53a)

where P; is the angular momentum about a principal axis <, one of the axes
of the moment of inertia ellipsoid. The rotational energy constants A4, B,
| and ¢ are defined as

| A _ A R
! A = 207 B = 21 C = 21, (4.66) .

. In accord with the convention adopted above (I} £ I, < I3), the rotational

b constants are given in the oxder of decreasing magnitude. -

Several limiting cases are of interest. A spherically symmetric top is
o one where all three moments of inertia are equal (I} = I, = I3). A prolate
symmetric top has one smaller moment of inertia and two larger equal moments \
(Iy < I = I3) while an oblate symmetric top has two equal smaller moments and
one larger moment (I = I, < I3).

Case 1. Spherical Symmetric Top, Iy = I, = Ig

The rotational energy can be expressed as

2 2 2
PN M S I &
r 71, 2T,

(4.67)

where P is the total angular momentum. This quantity is quantized, the wave
equation to be solved for the eigenvalues is the same as equation (4.29), so

the solutions are f .
) C
: P2 = J(J + 1)A2 (4.68)
‘ F.2 = lﬁi-J(J +1) = BJ(J + 1) (4.69)
r 21, )
! where J 1is any integer from 0 to o. By convention, J is used for the <
rotational quantum number for polyatomic molecules (rather than 1) and B is /

| used for the rotational constant when a single constant exists. Thus, for
spherically symmetric tops, the energy levels follow the same pattern as for
the diatomic molecule.
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A molecule with equal masses equally spaced in three-dimensional space,
such as C Cl,, is a spherically symmetric top. Any very large organic aole-
cule of about equal extent in all three dimensions would also be approximately
modeled by a spherically symmetric top; only, in this case, internal rotations
of parts of the molecule relative to the whole usually occur. Such molecules
are not then rigid bodies, and the internal angular momenta couple to the rota-
tion of the whole molecule to present a very complex pattern of rotational
energy levels. ‘

Case 2. Prolate Symmetric Top, I < Iy = Ij
Again, let the total angular momentum be quantized as in equation (4.68).
The principal axis 1 is now a singular axis of symmetry, and the projection of
P on this axis takes quantized values:
Py = Kk (4.70)

where KX is an integer taking values from -J to ./, the exact counterpart of
the quantum number m used in equation (4.30). Thus,

Py2 + P32 = [J(J + 1) - K2]A2 (4.71)

and the rotational energy in equation (4.53a) becomes

2 2 2
Ep -Z%J(J»« 1) + (%l—-?%)xz

BJ(J + 1) + (4 - B)K? (4.72)

The (27 + 1) degenerate levels of the spherically symmetric top are now
split into (J + 1) different levels, each with a degeneracy of 2 except when
K = 0. Since A > B, the perturbed energy levels all lie above the principal
level BJ(J + 1) by amounts proportional to the squares of the integers XK.

Methylchloride, CH3CZ, is an example of a prolate symmetric top
(A=5.097 cm~!, B=C=0.4434 cm"!). A molecule such as 03 has two larger
moments of inertia that are nearly equal (4=3.55 cm~l, B=0.445 cm-1,
€=0.395 cm~1). 1In this case, the molecule behaves almost as a prolate sym-
metric top, and a useful first approximation is to average the two nearly

equal rotational constants:
z.B+C

B 5 (4.73)
The energy levels are in this case approximately given by
Ep = BJ(J + 1) + (4 - B)X? (4.74)

but the levels with X # 0 are closely spaced doublets. Mass distributions
that are cigar-shaped, rods, discus-shaped, and flat circular plates are
examples of prolate symmetric tops. Note that linear molecules (I =0, I;=13)
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are a special case of the prolate symmetric top. In this case, the energy

levels are independent of X and X is eliminated as a necessary quantum
number. :

;Aﬂ.f“ 3 Case 3. Oblate Symmetric Top, I} = I < I;

[N Agair, the total angular momentum is quantized as in equation (4.68).
i Now, however, the principal axis 3 is the singular axis of symmetry, and the
: projection of P on this axis takes the quantized values:

ol Thus, in this case,

P12 + P2 = [J(J + 1) - K2]R2 (4.76)

g Bt e

and the rotational energy levels are

L

_ B " K2 .

? . Eyp = 27, JJ + 1) - 2T, " 205 X2 r
= 4 .
L =BJ(J + 1) - (B - C)K? (4.77)
;. In this case, the energy levels have a pattern similar to the prolate symmet-
§ ric top except that it is inverted; all perturbed levels differ from the prin-
: cipal level BJ(J + 1) by amounts proportional to K2, although in this case
i lying below the principal level since B > C.
% Ammonia, NH3, is an example of an oblate symmetric top (A=B=9.94 cm”

C=6.24 cm~1). A molecule such as HZS has two nearly equal smaller moments of
: inertia (4=10.37 em~!, B=8.991 ecm™1, C=4.732 cm!) and therefore behaves
5 a2lmost as an oblate symmetric top. Again, a useful first approximation in
! this case is to average the two nearly equal rotational constants: \
5-45F (4.78) \
% The energy levels are approximately ;r
E , Ep =BJ(J + 1) - (B - O)K? (4.79)

Again, the levels with X # 0 are closely spaced doublets.

Mass distributions either doughnut-shaped or ring-shaped (such as benzene
molecules) are examples of oblate symmetric tops. Derivation of the relations
: that exist between masses and bond angles in the more general triatomic mole- .
v cule case is given as the following problem. 4

.{»xﬁ 1(.“)UL,I’ i v oYy
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triatomic molecule of the type Y-x-Y (fig. 4.6)
has the moments of inertia:

M2 2 ppa?
I, 2”,1 v d? cos? a (4.80a)

Problem 4.8: Show that a nonlinear, symetric T‘ .

I = 2my d? gin? a (4.80b)

2m|d cos «
2m+mg

mod cosa JE
fmnmg - ]

Taslpg+ Iy (4.80c)

where m; is the mass of the end atoms, m; is the

mass of the central atom, d is the bond distance
between the central atom and the end atoms, and the
angle between these bonds is 2a. Whether Ig or I3,
is the smaller thus depends on this angle. The bond
length and angle can be determined from the monents
of Inertia ::J‘;;sfes:'l‘s" fit to the observed Figure 4.6.- Nonlinear symmetric
I triatomic molecule; interatomic ' :
2 '3%“ (_L:qu (4.81) distance d, included bond angle 2a,

mass of end atom m;, mass of cen-

tral atom mgp; —_ axes

Iy .
u*(ﬁ;:j@)f; (4.82) through center of mass. .

Note that a particular angle exists, tan a = v¥my/(2m; + my), such that Ig = Ip = I,/2. If the bond angle is
close to this angle, as it is for H;S, the triatomic mole. ile behaves approximately as an oblate symmetric top.
I1f, on the other hand, the bond angle 2a is near 0 or n, the molecule behaves as a prolate symmetric top. In the 4

former case, Iz = 0 and Ip = I,, while, in the latter case, I} = 0 and I = I,. At angles rather different than
either of these limits or the particular angle arctan vmy/{2m; + m;), the molecule behaves as an oblate symmetric
top if m = my, as for 03, or as an asymmetric top if m and m, are rather different as for H,0. Moments of
inertia and bond angles for some typical triatomic molecules are given in table 4.3.

Problem 4.9: Show that the symmetric XY; mclecule has two equal moments of inertia. Let d be the X-Y bond
distance and B be the angle between the X-Y bond and the axis of symmetry. First, let B8 = 90° and show that
Ig = Ip = 2I, for the planar molecyle case. Next let the mass of the X atom, mp, be infinite so that it is
located at the center of mass, and show that the moments are 3m;d? sin? 8 and 3md?[l - (1/2)ein? 8], where m, z
is the mass of one Y atom. What is the angle B where the molecule changes from prolate to oblate spherical top?
Finalivy, show that the moments for arbitrary masses are

M]dz ein? 8

3m .2 ] =
———7——(1 T mg) [2 1- -ﬁ'-;—) 8in- 8 3

E:
Calculate the rotational constants for NHj where 8 = 68° and d = 1.014 A 3

Case 4. Asymmetric Top, I} < I, < Ij

In this case, there are 2J + 1 distinct energy levels for every value of i //h;
the rotational quantum number ¢J, and the pattern of levels is more complex *
than for symmetric tops. If any two moments of inertia are approximately {
equal, the pattern is similar to that of either a prolate or an oblate symmet-
ric top, with the X # 0 lines split into closely spaced doublets as mentioned
above. If none of the moments are nearly equal, the energy level pattern is
distributed above and below an average energy:

oo e ki

— i
E=BI( + 1) = % (A4+B+0)W + 1) (4.83)
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In the general case, the pattern can be quite irregular. As an approximation,
the energy levels can be taken to be an average of oblate-like top levels and
prolate-like top levels

EW,T) = [Epihi) + Eppo )] (4.84)

where t 1is an index that runs from -J toJ and <% and j are indexes such .
that the lowest levels of Egp; and Epp, are averaged for the lowest energy b
(t = -J), the next to lowest luvels are averaged for the next level (t=-J+1),
and so on. The levels Eppz and Eppo are given by

By (0.8) = (A : B) JW + 1) - (‘—L%-‘—ZQ)KZ (4.84a) e

Epro(,K) = (B . C)J(J 1)+ (2'4'+-€) X2 (4.84b)

Therefore, the indexes 1, Z, and §j are related as

T=-d, J+1, -J+2, -J+3, -J+4, -J+5, ... i

1= J, J, d-1, J-1, J-2, J-2, ..
J.= 0) 1, 1’ 2’ 2, 3, * e =

If (A-B) = (B - (), the pattern is approximately symmetrical; otherwise, the :
pattern is unsymmetrical. The average energy for a given J is given by
equation (4.83) in either case.

The H20 molecule is an example of a rather asymmetrical top rotator
(4 = 27.88 cm~1, B = 14,51 cm~!, and C=9.285 cm~!), with an asymmetrical
pattern about the average levels BJ(J + 1) since (4 - B) # (B - ). Because
the degeneracy of all rotational lines is removed for the asymmetrical top,
the Hy0 rotation-vibration bands form a closely packed multitude of levels
distributed across a major portion of the infrared spectrum. Consequently,
the earth's atmosphere is opaque to the peak black-body radiation at the
earth's mean temperature, the solar energy received by the earth is effec-
tively trapped and does not reradiate into space and the earth's temperature !
is maintained at a level habitable for our form of life.

Figure 4.7 shows the types of rotational energy level patterns obtained }r "
with the different configurations discussed above: spherically symmetric top, .
oblate symmetric top, almost oblate symmetric top, asymmetric top, almost pro-
late_symmetric top, and prolate symmetric top. The energy is given in units
of B as defined in the figure legend for the different cases, so that the
principal lines fall at the same point on the energy scale, J(J + 1). Often
the energy levels given by equation (4.84a) and (4.84b) are diagrammed on an s
absolute energy scale; then the levels in equations (4.84) are indicated as a N
simple average of the corresponding lowest pair of levels, next lowest pair, ]
and so on. Recall that each level of the symmetric tops has a degeneracy of
2 except for X = 0, which has a degeneracy of 1. This degeneracy is illus-
trated in figure 4.8 for levels up to J = 3 for (2/3)A=B=(3/2)C, which is
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roughly like the H,0 molecule. The levels predicted by this simple averaging
cannot be expected to have high accuracy, of course, but they do give a real-
istic idea of the spacing and symmetry of the pattern and they are often suf-
‘ ficiently accurate to use in calculating partition functions. If the
differences 4 - B and B - ¢ are more unequal, the pattern becomes more asym-
metrical. For higher values of rotational quantum number J, the lines from
different J groups overlap and produce a very complex spectrum that is tedi- o
ous to unravel. An approximation often used in this case is to assume that
the 27 + 1 different levels are randomly distributed in the interval between L .
the minimum level in equation (4.84a) and the maximum level in equation (4.84b). B

4 x Jr

H
s 3 - p—
[ -— 2 —
: ¢
$ — —i - —a s
D= —3 -—
—— o - by
———“
— .
s
- e T § ——
bl — -— w— by
e 4 —
-_—2 — 3 —
— Ty — 2 cm—
0= 5 —— -t —t SR s
———2 o oy
—— 3 = 5y
— e — %,
—5.
B- —— - _..;:
H] —.__:; -—— [ yp——
., = 2 ——
— 4 — 2 e—
G20 & e —g o — R ;_
— — "
—3 e 42
— 4 - =
‘W
15=
—_.-_—.2 — 3 —
% J— % -—— 3—_
3 — - -— — 1 —
m— —— "_":nt °
0= — 3 - =:;
2,
» st I — R ——
2 — — -_— ——— T [ ] o T——
- — 2 — _—“"‘;;
— '—
Vo— -t o =1 °
Q= § ommam ———— O — w— ) ——— 0 v
1 3 x b 4 X n
ROVATOR TYPE

Figure 4.7.- Rotational energy level patterns for polyatomic molecules. Total
quantum number, J; projection of J on singular axis of symmetry for sym-
metric top, K; integer index for lines of asymmetric top, T(-J < t < J).
Type I, spherically symmetric top (4 = B = (), also linear molecule
(A==, B=(C), B=B; Type 1I, oblate symmetric top (A =B > (), B = B,

(B - C = (1/10)B for pattern shown); Type III, almost oblate symmetric top
(A=B>C), B= (1/2)(4 + B), (B-C= (1/10)B for pattern shown); Type_ IV,
asymmetric top A > B >C), B= (1/3)(A+B+(C), A -B=B - C = (1/10)B
for pattern shown); Type V, almost prolate symmetric top (4 > B = (),

B = (1/2)(B + C), (A-B = (1/10)B for pattern shown); and Type VI, prolate
symmetric top (A > B = (), B=B, (A-B = (1/10)B for pattern shown).
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Figure 4.8.- Rotational energy level pattern obtained for asymmetric top
by averaging the oblate top and prolate top approximations.

4.13 EQUILIBRIUM ENERGY AND SPECIFIC HEAT OF RIGID ROTATORS

The equilibrium rotational energy of a collection of rigid rotators is
given by
dinQ,
Ep = RT? 5 (4.85) . .

The partition function of the two-dimensional rotator is proportional to T,
so the equilibrium energy is then

Ep (two-dimensional rotator) = RT (4.86a)

On the other hand, the partition function of the three-dimensional rotator is
« proportional to 73/2 ) and the equilibrium energy is then

Ep (three-dimensional rotator) = %-RT (4.86b) /
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This is an example of equipartition of energy, (1/2)RT being allocat~1 to
each of the available degrees of freedom at equilibrium. The specific heats
are just the derivatives dEp/dT:

Cy (two-dimensional) =R (4.87a)

Cy (three-dimensional) = =;’_-R (4.87b)

Probles 4.10: Develop analytic expressions for the rotational energy, the specific heat, and the entropy for a
truncated rigid rotator with maximum quantum number 1’ given by equation (4.33a).

4.14 CONCLUDING REMARKS

The steady-state wave equation for a two-particle system can, in the
absence of external field effects, be decoupled into two independent wave equa-
tions, one describing the kinetic energy of the center of mass and the other
describing motion of the two particles relative to the center of mass. If the
two particles are bound together by a potential, as in a diatomic molecule,
the second wave equation describes the rotational and vibrational motions of
the molecule.

In many molecules, the amplitudes of vibrational motion are rather small,
and to a good approximation the rotational motions may be modeled as a rigid
rotating top. Diatomic molecules and linear polyatomic molecules are special
cases of prolate symmetric tops and, in this case, thc energy levels and rota-
tional contributions to the thermodynamic properties can be analyzed quite
rigorously. The polyatomic molecule generally rotates as an asymmetric top;
in this case, the energy levels are more difficult to model exactly, but the
pattern of levels can be obtained as an average of the prolate-top and oblate-
top patterns. The center of these patterns can be accurately placed, so the
rotational contributions to thermodynamic properties can be assessed with
reasonable accuracy.

Perhaps the most significant contribution gained from the quantum model
of rotators is an appreciation of molecular symmetry effects and the role of
nuclear spins., These effects do not normally influence the thermodynamic
properties of gases appreciably, except for very light molecules at very low
temperatures and except for shifting the zero level of entropy. However,
nuclear spin effects can strikingly affect the pattern of observed energy
levels and the transition. allowed between them.
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CHAPTER 5 - DIATOMIC MOLECULE VIBRATIONS

5.1 SUMMARY .

The rotational energy is separated from vibrational energy in the
two-particle, steady-state wave equation and to first. order the solutions are
harmonic oscillator functions. The clarsical phasc integral gives a partition ‘
function valid only at high temperature, but the quartum summation is easily
performed to g! sre analytic expressions for all the thermodynamic properties of
the harmonic oscillator at all temperatures. Anharmonic effects are treated
by small perturbation solutions to the wave equation and the relation between
energy levels and a series expansion of the perturbation potential is derived.
Next, the quantum solutions for an oscillator with a Morse-function potential
are derived in terms of Laguerre polynomials.

5.2 INTRODUCTION

The vibrational amplitudes of many molecules are so small that the
coupling with rotational motion is relatively modest and to a good approxima-
tion the vibrational mode may be treated independently. As gas temperature is
increased, a considerable amount of energy can be stored in the vibrational
mode, which contributes to th. internal energy, specific heat,and other thermo-
dynamic propc_ ies of the molecule. Quantum effects are even more pronounced
for vibrations than for rotations because the energy spacing between levels is
often large compared with normal thermal energies xT. Thus a classical model
would be totally inadequate in this case and, for most purposes, a quantum
model must be used. In this chapter, we treat the diatomic molecule vibra-
tions and follow with a treatment of polyatomic molecule vibrations in the
next chapter.

5.3 DIATOMIC MOLECULE WAVE EQUATIONS

The steady-state, two-particle wave equation in center-of-mass
coordinates (derived in ch. 4) is found to be

vy + ;21'2—' [E - V(r)]v = 0 (5.1)

For the rigid rotator, the potential V(r) was taken to be zero; now to
account for the potential that results from the combination of nuclear coulomb
repulsion and the attractive electronic energy:
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Figure 5.1.- Qualitative shape of
interatomic potential in “iatomic
molecules. The potential is minimum
at rg, it is steeply repulsive at
shorter distances, and it asymptot-
ically approaches the dissociation

energy D at large »r,

near the minimum.

The shape

is approximately quadratic in (r-nr,)

2
V(r) == 7;122 - By (r) (5.2)

where Z); and Z; are the nuclear
charges involved. The electronic
interaction E; is understood quali-
tatively, and the general shape of
the combined attractive potential
and the short-range nuclear repul-
sion is shown in figure 5.1. Unfor-
tunately, uccurate quantitative
solutions for this potential are not
generally available for multielec-
tron atom irnteractions. However, we
can proceed with the empirical obser-
vation that most diatomic interac-
tion potentials are very neariy
harmonic near the potential minimum,
and the lower energy states of vibra-
tional motion at least can be
modelled reasonably well with the
harmonic oscillator potential

v(r) = !‘%3 (r-r)2  (5.3)

where w is the circular frequency

of the oscillator, 2mv, and 1, is
the equilibrium interatomic distance. Solutions for harmonic oscillators are
considered first and anharmonic effects are treated subsequently.

First the rotational motions are separated from equation (£.1) by !
asstming a separable wave function in spherical coordinates:

v(r,0,4) = 2L y(o,4) (5.4)

Substituting equation (5.4) into (5.1) and rultiplying by »r2/y, one obtains

2 d2R  2ur? 1 1 9 . 9y 1 321] oy
—r — ow—— — —— !
R 4,.’2" #2 iZ- V(r)]l *y [sm 536 \°" % 38)*sin 0 3¢2 =0 (5.5) "

The first bracket in equation (5.5) is a function only of r and the second '
is a function only of 6 and ¢. Each must be constant, one the negative of J
the other, for the equation to remain valid for arbitrary r, 6, and ¢. If

the second bracket is equated to -I(l + 1), ¥ is then the same spherical ‘
harmonic function found in chapter 4 to be the solution for the ::ave function f
of a rigid rotator with energy I(I + 1)¥2/2ur2. The equation for R may be

expressed accordingly as
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) ‘52 [ 2ur?

The diatomic oscillator thus behaves in a manner analogous to a single
particle of mass . moving in an effective pc* ntial V(r) + (1 + 1)%2/2ur,
Strictly speaking, there is a coupling between the vibrational and .otational
energy and the wrve function is not truly separable. However, to a first
approximation, the vibrational coordinate changes so little from its equilib-
rium valne », that the rotational energy term may be replaced witt the con-
stant 1(1 + 1)#2/2ur 2. To this approximation, the oscillator solutions are
independent of rotat1ona1 quantum number I and, by suitable choice of the
reference potential level, the differential equation for the oscillator wave
function R has the same form for any value of 1:

o
drz
where E; is the energy above the reference level 1(L + 1)A2/2urg2. Note

that this is a one-dimensional, harmonic-oscillator wave equation. The three-
dimensional oscillator wave function is YR/r, as given by equation (5.4).

52 [E7 - V(P)]R = (5.7)

5.4 CLASSICAL HARMONIC OSCILLATOR

The limiting, high-temperature value for the partition function of the
harmonic oscillator is the phase integral

@ o> 7; [T e T g ar (5.8)

where the Hamiltonian function is the oscillator energy expressed in linear
momentum p and distance units r as

H= %ZT + H-z— (r - 1,)? (5.9)

The integrations in equation (5.8) are easily performed to give

kr T
— —— = — 5.10
Qv T>>6v ﬁm 9 ( )
where €, is the characteristic temperature
By = 67:-"- (5.11)
127

REPRODUCIBILITY OF THE
ORKJP\ AL X '\Gu IS POOR

N . . T st o B |

\

12 ik,

e it Yot ST

- [
I s

o,

e L U TR P



oy " W o, a,
A

L TS TN i s Sl

P SO

Unlike the rigid rotator case, where the characteristic temperature was very i
small, the characteristic vibrational temperature 6, is rather high for many !
diatomic gases (see table 5.1). Thus, the summation over quantized staces is

not accurately reproduced by an integral, as the classical model demands, and i :
the quantum solutiuvn is needed for temperatures of practical interest. .

TABLE 5.1.- CHARACTERISTIC VIBRATIONAL TEMPERATURES ' L
FOR DIATOMIC MOLECULES '
(Based on w=uw, - wexg + 0.75 wgye, data from ref. 1)

Spedah g SO et
. 1,

o ‘Jz PR LT P

- Molecule | 6y, =ZXAw/k, °K ‘

. 02 2256 Y

L Ny 3371

NO 2719 -
co 3103 R
f H, 6159 ~
D, 4396

K cl, 801

S Br, 464 -
oo HCl 4228

5.5 QUANTIZED HARMONIC OSCILLATOR

Tran-form the oscillator coordinate to

y = (l‘ﬁﬂ)m(r - 1) (5.12)

so that the harmonic potential in equation (5.3) becomes y¥2/2 in units of
Aw. Then equation (5.7) becomes

3 d2R [ _E_ _ 2] =
: Ey?-l- Z(ﬁw) y“|f = 0 (5.13) ’fk

This equation can be put into the form of Hermite's differential equation by
factoring out the asymptotic behavior as y2 >> 2E/AKw,

(TR ¢ AR

== —» YR , R —e¥ /2 /
dy® yaw Yy

2
Let R=¢eY /ZH(y). Then equation (5.13) transforms to

e erp AR T
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a2 "W [ (ﬁm J
A series solution with a finite number of terms exists for this equation V

(refs. 2-3), one of the Hermite polynomials H,(y), provided the energy is an
odd half-integer number of quantum units #w; that is,

E - 1 » " ’
v} (5.15) j

where the vibrational quantum number v is any integer from 0 to =.

Note that the ground vibrational state contains 1/2 quantum unit of
vibrational energy. This occurs because the potential minimum tends to local-
ize the oscillator position and a finite amount of energy must be retained to
satisfy the uncertainty principle. For the rigid rotator, no localizing poten-
tial was present and the ground rotational state could then be zero energy.

The first few Hermite polynomials are

Hg =1
Hy = 2y
Hy = 4y% - 2

= 8,3
Hy = 8y3 - 12y | (5.16)
Hy = 16y" - 48y2 + 12
) km k

_ (-1)"p! v-2k
by = kE - 2k k1 (%) |

=0

where k, is the largest integer less than or equal to v/2. This list may
also be extended by means of a recursion relation:

Hpsy - 2yHy + 20Hy_, = 0 (5.17)

which is derived in any standard text on quantum mechanics (refs. 2,3).

The one-dimensional, quantized harmonic oscillator wave function now
becomes

Ry = Ny e'yz/sz(y) (5.18)
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where N, is a normalizing constant

174 172
. [Ho 1
my, (" ’l) (zvv!) (5.19a)

so that the integral of R,2 over all space is unity:

() w /2 ©
%\1/2 y2 A\ -y2
der=(—-) N2f éy Hvzdy=(— NZ’ e V2 dy
-[, v N T waf T v

% 1/2
= EU) N,2n1/ 229y = 1 (5.19b)

2
Evaluation of the integral of e ¥ Hvz is again available in standard quantum
mechanics texts (refs. 2,3). The total three-dimensional, oscillator-rotator
wave function, as given by equation (5.4), is

R,(»)
V. 1.m = —— Y1m(0,9) (5-20)

5.6 THERMODYNAMIC FUNCTIONS FOR HARMONIC OSCILLATORS

The degeneracy of each vibrational level for harmonic oscillators is
unity and the partition function is a simple geometric progression:

_ N _-v6,/T _ 1 '
Qv = vgo e = 1—-—e—_e—v7-f (5.21)

where the energy levels are defined relative to the ground-state vibrational
energy k6,/2, the zero point energy referred to in section 1.11. When

T << 0y, the partition function approaches unity and the diatomic molecule
behaves as a pure rigid rotator. When T >> 6y, @, > T/6,, the classical
limit given by the phase integral, equation (5.10).

The vibrational energy of an equilibrium distribution of harmonic
oscillators is

din Qv ev/.T

Ey - Ep = RI2 ——" = BT T (5.22)
e -

where E, is the molar zero point energy, R6,/2. The contribution of the
vibrational modes to specific heat and entropy is

REPRODUCTRILITY
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Vo dl gink2(e,/2T) (5.23a)

Sy = RT .__EQZZL_. +R1ln Qv (5.23b)
/T

Figure 5.2 shows the variation of
Ey/RT and Cy/R as a function of Cy s2t
T/8,. When T << @,, the energy R %5757)
becomes R6,/2 or szlz (the zero
point energy for N molecules)
and the specific heat vanishes.
When T >> 6,, the energy
approaches RT and the specific
heat becomes a constant " R, the
classical limit for two degrees of
freedom that depend on quadratic
terms in the Hamiltonian (see
section 1.10).

o
-

AND SPECIFIC HEAT CwR
> o @
T Y T

.
~n
¥

DIMENSIONLESS ENERGY (E,-Eo//RT

1 1 L

2

- » - o I
The partition function for a DIMENSIONLESS TEMPERATURE, 78,

real molecule with a finite number
of vibrational levels bounded by
the dissociation energy D does
not increase without limit, as
does the harmonic oscillator model
with an infinite number of vibra-
tional levels. A qualitative idea
of this limit is provided by a
truncated harmonic oscillator
model with maximum vibrational
quantum number D/k6:

Figure 5.2.- Energy FE and specific heat
Cp of a harmonic oscillator with
characteristic temperature 6, =Auw/X.
Vibrations are unexcited when T <<8,
and provide two classical degrees of
freedom when T >> 6,.

D/kS,

,00/T _ 1 - eI/KT D

@, =
v V=0 1 _ e-Bv/T T>>D/k kev

(5.21a)

This limit is the order of 20 or more for many diatomic molecules. At usual
temperatures of interest, the correction for truncation of vibrational levels

is small and is less important than corrections for anharmonic effects and Vfl
vibration-rotation coupling. However, it is well to be aware that a finite
limit for the vibrational partition function does exist for real molecules,
rather than the limitless function deduced from the harmonic oscillator model.
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5.7 ANHARMONIC EFFECTS

The intermolecular potential is not purely quadratic, of course, and
small deviations from the harmonic oscillator levels occur in real molecules.
The observed energy levels are empirically fitted by spectroscopists to a
series expansion of the form (refs. 4 and 5)

E = Ru, (y + %) - e(” + %)2 + ye(v +-%)3+ .. .] (5.24)

where x, is typically the order of 1072 and Yoo when determined, is gener-
ally many orders of magnitude smaller yet. Higher-order terms are usually not
warranted despite the magnificent precision of spectroscopic data. The zero
level of energy in this expression is the value at the potential minimum,
hence the subscript ¢ on w, z, and ¥. In older spectroscopic notation, the
zero level is the ground-state eigenvalue. The energy funct’on is then
expressed as

E=tu,[v - zp? + yod + . . L] (5.24a)
and the subscript o denotes the appropriate reference energy.

Problem 5.1: Derive the relations between the spectroscopist's constants uw,, X5, Y, and we, Xg, Yg. Show
that

3
Wy = Wg - TgWg * 7 Yglg * - -+ -
_ 3
Tk = Telle - 7 YeWe * - -
yd"0=yewe" A

One can see that the differences between the two sets of constants are small.

The higher-order terms in the eigenvalues of energy appear when a series
expansion is used for the potential function, known as the Dunham potential

2
v ayd byt e (5.25)

Fitting higher-order terms than y* to the observed energy levels becomes
very involved and rarely do the data warrant retention of these higher-order
terms. To illustrate the method, retain only the term in y3; the next order
term can be included by following the same procedures, although the process is
more involved. In either case, solutions to the Schroedinger equation are
obtained by a perturbation method.
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5.8 PERTURBATION SOLUTIONS FOR THE STEADY-STATE WAVE EQUATION i
The steady-state Schroedinger equation is
By = Ey : : (5.26)

If the Hamiltonian can Le expressed as the sum ' e
B=1 + 8 (5.27) o

where solutions to the wave equation, wko’ are known for the Hamiltonian HO°,

the perturbation method can be used. Since solutions to the Schroedinger equa- ¢
tion must form an orthogonal set (ref. 2), which can be normalized, the known
solutions wko obey

Howko = Ek"wk" (5.28)

: % (5.29)

The unknown functions V¥, can be expanded in terms of the orthonormal set of :
functions wko: '

¥y, =§ank¢ko (5.30) x
Substitute equation (5.27) and (5.30) into (5.26) to obtain
gankﬂ"wk" + ;ankﬂ'wko = §ankzn¢k° (5.31)
Then, with equation (5.28),
;anky"l’ko =§ank(ﬁ'n - E'ko)wko (5.32)

Now multiply both sides of equation (5.32) by (wno)* and integrate over all
space. Let the matrix elements Uij denote the integrals

_ o* o
vgg = Jo, 0000 dn (5.33)
Then ’
. y
%“nkynk = Qpy (Ey - En°) (5.34)
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and the perturbed energy is

) Ik .,
E, = E, + an—-n 'k (5.35) ‘
; 4
Thus far, no approximation whatever has been involved. Now if H' is small, !
by, = wno, and to first order the coefficients in equation (5.30) are au,=1,
ank << 1. The first-order perturbation result (refs. 2,3) is thus
Ep = E,° + Upy (5.36) :
*; i For the anharmonic oscillator for which H' = ahmya, the first-order correc-
'~-l tion vanishes by virtue of symmetry, ‘
L . F
‘ . [ J 2
Upn = aho § y3,2)" dy = 0 (5.37)
and the next order terms must be considered. Approximate expressionsofor the .
f : coefficients a,; are obtained by multiplying equation (5.32) by (¥7 )* and %
integrating over all space: :
DO 2 ankVik = any By - E1%) (5.38)
; |
4 . Again, where »n = 1 and all other coefficients are of order much less than
unity, the coefficient a,; is given to terms of first order by
E:
Uy, §
ant = EO - EZU (5.39)
j n
3
Thus, equation (5.35) can be expanded to ;
é 3
‘ Uz, U 3
:g By = E,0 + Upy + ———E§””ZO+. .. (5.40) z
, kfn "tk b
% Equation (5.40) is a general result for any slightly perturbed system. For x '
K i the case of interest here, a slightly anharmonic oscillator, En° -E'ko = (n-k)hw :
! and Uy, = U,x. Equation (5.40) thus becomes 7
ki 7
¥ #r
2 2 2 2 2 2 i
1 Un,n-1 - Un,n+1 Un,n-z - Un,n+2 Un,n-a - Un,n+3
En=(n+—)hw+Unn+ + + ... :
2 m 2Rw 3w
(5.41)

The matrix elements U,; are evaluated using the recursion relation ,
between Hermite polynomials given by equation (5.17). Repeated application of .
the recursion relation leads to
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Since the harmonic oscillator wave functions are orthogonal, the matrix ele-
ments Uy all vanish except for k =n+3, n+l, n-1, and n-3. The
nonvanishing matrix elements,

™S . 2
Unk = ako " y%,On° dy = ahuly iy £” y® eV B my dy (5.43a)

become
Up,n-1 = < T akw = S—(3-) ahw (5.43b)
U =3 men M g =3 (n+1)[2(n+1)]11 2ah (5.43c)
n,nel = g Vo1 3 ’
¥ ! 1/2

Uy pon = n(n-1)(n-2) w0 ahm=n(n-1)(n-2)[ ] ahw
n,n-3 Ny_g 25nn-1)(n-2)

(5.43d)
U 1 ahw = L [23(m+1)(n+2)(n+3)]) 2ahu (5.43¢)
n,n+3 - § Ny q 8 )

The perturbed energy in equation (5.41) thus becomes

E, = ﬁw[(n-r%)-% (324 3n+1)a? -5 (3n2 +3n+ a2+ . . ]

ffre) S ol e ]

If the small zero point shift in energy level (7a%/16) is neglected, this
takes the same form as the spectroscopic notation, equation (5.24), when

4x,

2 o le
a 15

(5.45)

Some typical values of x, are shown in table 5.2, and the difference
7a%/16 is truly negligible. We conclude that a cubic anharmonic term in the
potential can account for the observed first-order departures from the har-
monic oscillator energy levels. However, a quartic perturbation must be
included to account for the next order term with coefficient Y, (ea. (5.24)).
This next term is derived in a way similar to the derivation just presented.
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TABLE 5.2.- ANHARMONIC COEFFICIENTS FOR DIATOMIC MOLECULES

)3 Molecule g Fus/4D
s ’ Ny 0.00612 | 0.00749
I 02 .00763 .00963
P co .00620 .00605
5 NO .00734 . 00909
M Hy .0268 .0304
¥ cl, .0C703 .00707
. Br, .00332 .00508
: 5.9 MORSE FUNCTION POTENTIAL
I

" The anharmonic effects in the lower vibrational levels can be accounted

for adequately by an expansion of the potential function in a power series
such as equation (5.25). But near the dissociation limit, such expansions

S e e,

N g

with a practical number of terms

: 14r :‘E HARMONIC OSCILLATOR, usx2 will diverge from the true potential.
o ozl | Figure 5.3 shows a harmonic poten-

' . 3 :E 2 (aW/2.3 tial adjusted to fit the observed
ot ';E CUBIC ANHARMONIC, “"‘_:_(21!) x vibrational frequency w, and an

y H T ey LA anharmonic cubic potential fit to

E PYRI <MORSE SOTENTIAL the observed w and with a maximum
; it YA \{ a2 at the dissociation limit. The

5 8 ek ﬁ s usti-e™) cubic correction fit to the observed
'i | /%" (LENNARD-JONES 6 -12 POTENTIAL lower energy levels gives a maximum
: ak ] ;}F\‘U{Feﬁﬂsr considerably less than D. Both

: / + functions diverge from the correct

5 2+ y asymptotic value, the dissociation

g energy, at large values of the inter-
k A — atomic distance. An empirical func-

T ) 55 6
DIMENSIONLESS INTERATOMIC DISTANCE, "'zzﬁo ) 2ir-re)

Figure 5.3.- Approximate diatomic
molecule potentials. (a) Harmonic
oscillator potential that fits the
observed vibrational frequency (solid
curve). (b) Cubic anharmonic poten-
tial that fits the observed w and
has a maximum at the dissociation
energy D (dashed curve). (c¢) Morse
potential that fits the observed w
and asymptotically approac’es D at
large interatomic distances (broken
line curve). (d) Lennard-Jones 6-12
potential that fits observed w and
asymptotically approaches D (dotted
curve).
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tion that does have the proper
asymptotic behavior and that can be
closely fit to the observed lower
vibrational energy levels is the
Morse function (ref. 6):

V=01 -2 (5.46)
where the distance variable x is
1/2 1/2
_ ﬁw) . vmz)
() v=(5) o-ro

(5.46a)
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This function is also shown in figure 5.3 and, although it closely approaches
the asymptotic limit at somewhat larger interatomic distances than observed
for most diatomic molecules, the Morse potential gives a more realistic model
of upper vibrational levels than the harmonic or power series potentials. An
interesting feature of the Morse potential is that exact solutions to the
Schroedinger equation can be found (ref. 6). Transform the oscillator wave
equation (eq. (5.7)) to the coordinate x in equation (5.46a):

4_25(22)2
a2\

(% - .;.')R = 0 (5.47a)

Substitute the Morse potential in equation (5.47a) and let the constant
a = 2D/hu:

2 - -
iie-+¢:;2(-1E3-14-2ex-ew)}?=0 (5.47b)

A further transformation to w» = e¥ leads to

d2R 1dR, (/D) -1 2 _
?;)-—2-+5E+0[—-—;2——-+w-1]3-0 (S.47C)

To transform this into the Laguerre equation, let
RW) = e an)P 2L w) (5.48)

It follows that

2
wL"'.' (b+ 1 - zw)L' + [(aZ_az)w+2a2 -a(b+ 1) "‘% (az %-az +.-b-4-_)]L=0

(5.49)

For the expression in brackets, the term in w» vanishes if a=a and the
term in w-! vanishes if (E/D) =1-b2/4a®. Finally, let z=2aw. Then

R(z) = ¢"#25P/21 2 (5.48a)

where L(2) is the solution to the Laguerre equation:

2
z-:—z-gi+(b+l-z)%+(a-b;1)L=0 (5.49a)

This equation has a finite polynomial solution if the coefficient of the last
term, o - (b + 1)/2, is an integer v. Thus,
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‘f;‘ and the allowed energy levels are

nomials:

oscillator wave function is then
Rv=c7)

where b

is given by equation (5.50).
normalizing the integral of R,?

z2 =2
: 1/2
d,,(_z_%)
Hw
o 172 @2a
1=f ot dre () f
o Hw o

Thus,
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vV +

b
L= Lv+b(8)

The index b need not be integral, but v must be.
e-z/zzb/z

The constant C,
to unity.

o o (02/20) Y 2 (p-r)

dz

3

(uw?/20)/%n,
e

b
Lv+b(z)

" ecf- @] 269)- 269
oo+ D)- (e

PR The factor #w/4D is compared with the observed coefficient =z, in table 5.2.
Moderate agreement exists between the two; the Morse correction to the har-
monic oscillator energy leve.s is typically 10 to 20 percent too large.

1/2 (5.50)
1
7
)2] (5.51)

The allowed energy levels are a monatonically increasing function of
quantum number v up to (v + 1/2) < 2D/ku.
back and finally becomes negative; the levels with decreasing energy as v
increases are regarded as unreal and, in this sense, the Morse potential leads
to a finite number of levels, approximately the number actually observed.

Beyond this, the energy doubles

The solutions to equation (5.49a) are the generalized Laguerre poly-

(5.52)

The complete Morse

(5.53)

is again derived by
In terms of the variable 2z,

(5.54a)

(5.54b)

R..2 1/2 > p. 2
—2—-dz==<:¥%) X 4z
2 W 0o 2

(5.55)
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-2 (20\V2 % -z b-a[b 2 ‘
¢, (nmz) A Rt Lmb(') ds (5.56) :
3 The integral is evaluated using the moment-generating functions for the ‘
’ Laguerre polynomials:
§ o b L
' L (8)141' b "'u/(l“u) h " f
Ulx,g) z (D e i (5.57a) i
] r! Q b+l
r=b - u)
- Lg(z)y‘ (-1? o~/ (1-¥) b '
V(y,3) = = rra (5.57b)
: a= -y
Consider the integral I defined by
. S
3 I= f e 2P oy ds « :Ts! f e"zb'lLIb,Lg ds L
° r,s=b °
. - iﬁz - f -1 Bl 1.0+ /1)) 4,
(- a-p”t Yo
; ] b (b- 1)1
E 1 -wb - pd" (1 ¢ T y)E
;
g’ - L) ( ‘L)b (5.58)
i T-0(0-p \T - w ' a
€ |
' Expansion of the factors in the last expression for I yields \
e 4
4 o b+Z-1!ub*Z
& = -
I=(b-1)! 2'2014'7) )[Z-o L—F—L%-‘LL—( 1
i;
; Z-1)! ]
- S : @rI-D (ybeldyk (5.59)
: .k, l=o ,
3
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To evaluate the normalizing integrals, choose those terms where J = X,
l+k=n,andr=g=n+ b and compare coefficients:

w n
I« (wy)™*? P b+Z L1, terms with wy”
n=o0 =0 ngm

% n+b ® 2
= Z —-(H)-——J. e'szb'l(Lb’b ds + other terms (5.60)
=6 [(n+b)!1]2 n

By inspection, one sees that

o -3.b- 2 2 3
L7 e (L,,) s - (o212 3 brl-D! (5.61)
=0

and the normalizing constant in equation (5.56) becomes
1/4 2 . 1/2
3 (B) wen [2 Lb__g_lz.!_] (5.62)
l=0 )

Since wave function solutions to Schroedinger's equation must be
orthogonal, the overlap integral of Merse functions with differsnt quantum
numbers v and v' must vanish. Except for a constant multiplier, these over-
lap integrals are

-8 -1+(b+c)/2b ] . “ .z be+6-1.b b+26 .
J;e 2D 10, d8 L e BN a2 a0 (s.63)

where 8 is the integer v-v', b=2a-2v-1, and ¢=2a-20' -1=b+28. This
orthogonality may be demonstrated by use of the moment generating function:

- b+2§ b+ - -
L . 26 -ay/(1-y), b+26
W(y,s) = E E— - (-1 1 T (5.57¢)
s.b’zs ( -y)

along with the moment-generating function U(w,3) in equation (5.57a). Con-
sider the ‘ntegral
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i ubyb+26 ® pes-1 _z[1+(u/]-u)+(y/1-y)]dz
=TT bezsel ) 2 ¢
1-u) (1 'y) o

_ ubyb+26 (b+6- 1)!
b+1 b+28+1 b+8
1-w?a -y R
Q-wy(1-y)
b §-1
) 28 (A - M)M1 B+ 8- 1)! (5.64)

a-un?**" a -y

We are interested in those coefficients where the exponent on y is » + 6,
that is, the coefficients of terms with (uy)ryé. But upon expansion of the
last expression for I' in equation (5.64) there are no such terms. The
expansion of the factor (1 - u)8-1 is a finite polynomial with u8-1 as the
highest power of u, whereas the expansion of the factor y25/(1 -y)d*l is an
infinite polynomial with 2% as the lowest power of y. By inspection then,
the integrals described by equation (5.63) all vanish and the Morse wave func-
tions are indeed orthogonal, as required.

5.10 OTHER EMPIRICAL POTENTIAL FUNCTIONS

A number of empirical potential functions other than the Morse furnction,
which alsc approach the correct asymptotic limit, have been considered. For
example, the potential

a b, (5.65)

phitm ph

with a, b, n, and m positive, possesses a short-range repulsion, a long-
range attraction, and asymptotically approaches the dissociation energy D at
large r. For neutral atom diatomic molecules such as Ny, the attractive
potential is primarily associated with induced-dipvle, induced-dipole inter-
action, and n should then be about 6. For ionized diatomic molecules such
as N3, the long-range attraction is for a charge-induced dipole pair for which =
should be about 4. Tonic binding occurs in highly polar mclecules such as
HCZ, for which the long-range interaction is Coulomb-like and 7 = 2. The
widely used Lennard-Jones potential lets =n =m = 6. The twelfth power repul-
sion is a fair approximation to the very steep repulsions that actually occur
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between atoms at short range. In some cases, an exponential repulsion is an
even better approximation, so the potential

-ar b
V= --—4+D .
ae -+ (5.66)

is often used. The Lennard-Jones potential fit to the observed vibrational
frequency w at the minimum is also shown in figure 5.3.

Problem 5.2: Show that equation (5.65) with the required shape ncar the potential minimum

2151 (p - poy2
4 ;j,?‘ (w?/2)(r - rg)2 can be expressed as

n+m n
Vv n 8 n+m B
raz (a B -2l (s g x) + 1 (5.67)

where

. [n(n; m ]112

24172
x = HZ%) (r-r,)

For nam,

and the Lennard-Jones potential is

The accuracy of empirical potentials may be assessed by comparing the
calculated energy levels with the spectroscopically observed levels; the con-
stant parameters of the potential are then adjusted until the best accuracy is
obtained for a given group of levels, usually the low-lying levels near the
ground state. This was relatively easy for the Morse function because ana-
lytic expressions for the wave functions and the energy levels were obtained.
However, analytic solutions have not been found for oscillators with poten-
tials given by equations (5.65) or (5.66). In this case, the Schroedinger
equation would need to be solved numerically with the energy level assumed,
and this adjustable parameter varied until the solutions to the partial differ-
ential equation match the required boundary conditions, namely, that the wave
function and all its derivatives must vanish as the oscillator coordinate »
becomes very large. These predicted eigenvalues of energy would then be com-
pared with the measured values to assess the accuracy of the empirical

potential function.

An easier method of assessing empirical potential functions than
presented above is available. The true potentiz! may be deduced from the
measured energy levels by a method called the Rydverg-Klein-Rees (RKR) method
(refs. 7-9). This need be done only once for a given molecule; then all types
of empirical potentials may be compared with the RKR potential. In figure 5.4
for Hp, the Morse potential, the cubic anharmonic potential, and the Lennard-
Jones potential, all giving the best fit at the potential minimum, are com-
pared with the accurate Rydberg-Klein-Rees potential for this molecule. The
Morse function is the best of these approximations at large values of »r.
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The Rydberg-Klein-Rees

potential may be derived only up to gior =

the point where the energy levels >

are measurable. For some molecules, g.e»

such as H, and 0, for example, z

these levels are known nearly to §-5“

the dissociation limit. The final RYDBERG-KLEIN-REES
few levels may be approximated rea- @~4’ ......

sonably well by extrapolation § ...... CUBIC ANHARMONIC
(ref. 4). In such cases, the 2.2r — - — LENNARD- JONES
empirical potentials are unneces- z . oy
sary for the accurate evaluation o o 2 % &4 5 6

of partition functions, since these
may be calculated merely by summing
over all measured energy levels.
However, for many molecules, the
upper vibrational levels are not
readily observable for various rea- potential (dotted curve), Morse

sons. Upper levels may not be pop- potential (dashed curve), and

ulated at reasonable temperatures, . .
for example; then the spectro- ts:::;d-Jones potential (broken line

scopist will not see these levels

in absorption. In emission spectra,

the upper levels may disappear because of predissociation, and transitions to
the upper levels of the lower state may be weak because of the small Franck-
Condon factors involved (ref. 4). Finally, the energy levels grow very close
together near the dissociation limit and line-broadening effects may smear the
spectrum together and make it impossible for the spectroscopist to identify
the upper states. The N, molecule is an example where this uncertainty in the
upper states has existed. The extrapolation of measured Np vibrational levels
was so uncertain that the dissociation energy of N, was in doubt for many
years (see discussions of this problem by Herzberg (ref. 4) and Gaydon (ref.S5))
until it was finally established with a nonspectroscopic method by
Kistiakowsky et al. (ref. 10). In such cases then, the Rydberg-Klein-Rees
potential determined to the highest observable vibrational level is the stand-
ard used to compare the various empirical potentials having the proper asymp-
totic limit. The best of these potentials may then be chosen to evaluate the
remaining vibrational levels.

pw2\/2
DIMENSIONLESS INTERATOMIC DISTANCE, x=(ﬁ {e-r,)

Figure 5.4.- Interatomic potentials for
Ho. Rydberg-Klein-Rees potential
(solid curve), cubic anharmonic

5.11 RYDBERG-KLEIN-REES POTENTIAL

he Rydberg-Klein-Rees (RKR) potential is the standard by which other
potential models are judged (as discussed above), but it also serves another
purpose, namely, to provide the most accurate vibrational wave functions when-
ever these are needed. These wave functions are obtained by successive numer-
ical integration of the Schroedinger equation with the RKR potential function
until the eigenvalues are found. Such functions may be needed to determine
perturbation transition matrix elements that result from either collision
perturbation or photon perturbations. The latter are the so-called
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RN Franck-Condon factors that

determine the strength of various
rotation-vibration spectral bands
(ref. 4), for example. For these 9
reasons, it seems appropriate to
review here the method of deriving
the RKR potential.

- u‘{:w‘;«"fu K

OBSERVED Consider the function S -
VIBRATIONAL- that is half the area bounded by
ROTATIONAL the total energy of the oscillator
ENERGY LEVEL and the interatomic potential
(fig. 5.5): e

pOTENTIAL, V ©

B g R B e FuibE, 26 0

25 = L’:Z(E- Ndr  (5.68)

INTERATOMIC DISTANCE, . .
' The effective potential for rota-

tional quantum level 1 is, from

: Figure 5.5.- Function 25 wused to equation (5.6),

evaluate Rydberg-Klein-Rees poten-
tials (area bounded by total energy

o g i st e o

! E and the interatomic potential V). V(r) =Vo(r) +-% (5.69)
r i
:
. where V,(r) is the potential when 1 is zero and x is 7(l + 1)A2/2u. Let ;

functions f and g be defined as
- (35 l ry T -1 .
f= (az 7 Jom? dr = 2 (5.70)
4 - 3S _ I'2 dP 4 A
g = (al( I = = ( - (5.71)

f Thus, if f and g can be determined for each measured energy level, the
1 turning points of the potential at that energy are given by A

r = (L fz)”z . F (5.72)
e
(.ﬁ )”2 f (5.73) |

! The area S may be defined in terms of an action integral I that is
four times the kinetic energy integrated over time:

I=2ftf%2-dt=4ftﬁ E - V)dt (5.74a)
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Some authors define the action integral as I/2w, but this merely changes the
constants in the following expressions. The term I must be expressed as a
function of ». Since dr/dt = [2(F - V)/u]l/2,
= 1/2p2 _ 1/2
I = (8y) frl (E - N2 gn (5.74b)

o= Bn12@E - N2 (5. 74c)
Then the area S may be expressed as

25, = (8w V2 fT0 (&, - N2 ar (5.75)

where the potential V is now considered a function of the action integral I
and the quantity «x. The upper limit of the integral in equation (5.75),

I,, is obtained from Planck's first statement of the quantum principle

(ref. 2), that is, the area swept out by the trajectory of the system in
momentum-coordinate space should equal an integral number of quantum cells of
size h:

fpdr=2Lf2pdr=2j;f2%2dt=rv=(v+%)h (5.76)

The area is increased by h/2 to account for the residual motion of the
ground state oscillator. This correction is strictly applicable only for the
harmonic oscillator, but diatomic molecules are very like harmonic oscillators
in the lowest levels, so the correction is sufficiently accurate. Trajec-
tories in momentum-coordinate space are shown in figure 5.6 for a quantized
harmonic oscillator and a slightly anharmonic oscillator, indicating how the
trajectories gradually diverge while the swept-out areas remain integral
multiples of the quantum cell size #&.

One can now see how to determine S graphically. Plot (Ep - 1':}'1)')1/2 as
a function of o'+ (1/2), where the vibrational quantum number v' takes
values from O to v. Then the area under this curve is multiplied by
h/(:’,Zu)“2 to get S;,. The process is repeated for different values of Ej,
but the same rotational quantum number I, to obtain the function S (&,
constant «), from which the slope f (eq. (5.70)) is determined. Similarly,
repeat the process for the same E, but different x or I(1+1)/2u to
obtain the function S (constant Ep, k), from which the slope g (eq. (5.71))
is determined. Then the turning points r; and r, for a given Ej, and x are
found from equations (5.72) and (5.73).

For low vibrational levels (n < 5), there are insufficient points for
accurate graphical integration, so a series expansion or Dunham function,
equation (5.25), would normally be fit to these lower levels and the RKR
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¢ - Figure 5.6.- Quantized oscillator trajectories in momentum coordinate space.
(a) Harmonic oscillator (solid curves). Momentum intercepts are

Py, = t(2uEy) /2 = { 2uhw) 1/2 (v + -;—) , coordinate intercepts are

172
r,-r, = £(2E/uw?)1/2 = t(Zﬁ/uw)l/?-(v + %) , trajectories are the

ellipses

2 2
- R ( l)
T (r-r,) E, v+ Aw

and the swept-out areas are

ZTIEU 1
fp dr = P, (1 - :.ne) = — =(v+7)h
(b) Anharmonic oscillator (dashed curves). The intercepts grow increas-
ingly different from the harmonic oscillator intercepts and the trajec-
tories grow increasingly non-elliptic as the quantum number v increases,
but the swept-out area increases as integral multiples of the quantum cell
size h.

fpdr=vh+§podr=(v+5)h

method would then be used to determine the turning points for the higher
energy states. However, Vanderslice et al. (ref. 11) use an analytic method
to obtain S in which the energy is allowed to be quadratic in I and «x; they
find good accuracy is maintained for all levels.

Rydberg's method (ref. 7) is essentially the graphical one outlined above.
In Klein's procedure (ref. 8), the integration of equation (5.68) and the
differentiations of equations (5.70) and (5.71) are carried out numerically;
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the process is laborious and care is necessary to obtain accurate results.
Rees (ref. 9) showed that solutions for f and g are readily obtained by
analytic means when £E;7 is expressed as a quadratic relation in I and k.
The usual expression for energy used by spectroscopists is

E‘v’z=hc[m(v+%)-um(v+-;—)2-a(v+%)l(l+1)+BZ(Z+1)+DZZ(Z+1)2 + .. ]

(5.77)
where w, a, B, and D are in cm”!. Define
1
I= (v+3)h (5.78)
c = L+ DR (5.79)
8n2y

Then

2 2 4,2
E= )I_(uxzc) 2. (81rh:ac) Ie + (81r ;Bc) ‘ +(641rh§ Dc) 24
(5.80)

Coupling between rotational levels is included (finite a) since it is
required for accurate results. (This coupling effect is discussed in

chapter 8.) A single set of values for the constants w, &, a, B, and D will
not fit the energy over the entire range of levels, of course, but the total
range can be represented adequately by a series of such quadratics.
Vanderslice et al. (ref. 11) use a relatively rapid procedure that fits these
constants by least squares to four adjacent observed energy levels. The quad-
ratic relation in equation (5.80) is then used to analytically evaluate the
integral S and the differentials f and g. The H, molecule is one of the
most sensitive tests for accuracy of the method, and good results are obtained
for this molecule by the Vanderslice method. Figure 5.4 shows the interatomic
potentials for H, obtained by Vanderslice et al., the Lennard-Jones function,
the Dunham function, and the Morse function. Obviously, the Morse function is
the best of the three empirical potential functions at large r.

5.12 THERMODYNAMIC FUNCTIONS FOR ANHARMONIC OSCILLATORS

Simple analytic formulas for the partition function of anharmonic
oscillators are normally not derivable, so the function must be evaluated by

numerical summation:
)
Q = ﬁ e Fv/KT (5.81)
=0
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where E, is the energy of level v deduced from spectra or given by an
approximate expression (such as eq. (5.24) or (5.51)) and v, is the maximum
level allowed by the dissociation limit. The equilibrium vibrational energy
and specific heat of a collection of anharmonic oscillators must also be
evaluated by numerical summations:

E,-E ding@ Um (E
v o _ v _1 v\ -E,/kT
—— * T & = q vz=o: (——--z i ) g V (5.82)
Cy 1By 1 I (Ep)? -Ey/kT  [Ey - Eo\?
T = E 717 = 5 & (—.. e - (——.——— (5.83)

The entropy due to vibrational modes is just

5y By - Ep

—R—‘ = —'I-?-T——-‘ + In Q‘U (5.84)
Similarly, all other thermodynamic properties are assessable in terms of the
above value of the partition function and its derivatives.

, Figure 5.7 shows the ratio

Al ol // of the partition function for a
/ Morse oscillator with :

S/ %.5/4D = 0.009 (a rather typical

‘ J value as shown in table 5.2) to

E)

/ the partition function for a
harmonic oscillator, plotted as
a function of the dimensionless
temperature parameter kT/Kw.
The ratios of the Morse oscil-
lator vibrational energy and
vibrational specific heat to
the harmonic oscillator values
are also shown. Because the
energy levels are more closely
spaced in the upper quantum
states than for the harmonic
Figure 5.7.- Ratio of Morse oscillator to oscillator, the partition
harmonic oscillator values (superscript function, energy, and specific

OSCILLATOR FUNCTIONS
T— —
o o
\,
m
L
m
o
=
m
)
m
=5
*

RATIO MORSE OSCILLATOR/HARMONIC

DIMENSIONLESS TEMPERATURE, X = kT/fiw

*) of the diatomic molecule partition heats are all larger than the
function, energy, and specific heat for harmonic oscillator values. For
hw/4D = 0.009. kT/%w up to 3, the corrections

range to about 7 percent for the
partition function, 10 percent for energy, and 21 percent for specific heat.
The correction to the partition function is approximately linear with tempera-
ture. An analytic expression for this linear correction is derived in chap-
ter 8 along with some additional linear corrections for vibration-rotation
coupling effects. The latter are found to be the same order as the correc-
tions for anharmonic vibrational level spacing so, for economy, these
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corrections are treated together at that time. The percentage corrections to
vibrational energy and specific heat are rather large at low temperatures, but
only in the range where their contribution to total energy and specific heat
is negligible; the corrections are significant only at temperatures sizable

fractions of Xw/k and larger.

5.13 CONCLUDING REMARKS

Harmonic oscillator solutions adequately represent the vibrational mode
of most diatomic molecules in the first few vibrational levels, and small-
perturbation corrections account for the anharmonic effects observed in the
next few levels. At higher levels, anharmonic effects become sizable. If
analytic expressions are desired, the Morse oscillator model gives a very con-
venient solution that describes the qualitative features of these effects very
well with little sacrifice in accuracy. Empirical potential models other than
the Morse function can be devised which have the proper asymptotic limit and
fit the true potential near the minimum, but these are generally less conveni-
ent to use because analytic solutions to Schroedinger's equation are not
available. Also, comparisons with the RKR method of evaluating the true poten-
tial function show that the Morse function is generally a better approximation
than other empirical potential models at large values of the internuclear

distance.
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CHAPTER 6 - POLYATOMIC MOLECULE VIBRATIONS
6.1 SUMMARY

Polyatomic molecule vibrations are analyzed as harmonic vibrations along
normal coordinates. The energy eigenvalues are found for linear and nonlinear
symmetric triatomic molecules for valence bona mvdels of the potential func-
tion with arbitrary coupling coefficients; such models can usually be fitted
to observed energy levels with reasonably good accuracy. Approximate normal
coordinates for the H,0 molecule are discussed. Degenerate vibrational modes
such as occur in COp are analyzed and expressions for Fermi resonance between
close-lying states of the same symmetry are developed. The bending modes of
linear triatomic molecules are expressed in terms of Laguerre polynomials in
cylindrical coordinates as well as in terms of Hermite polynomials in
Cartesian coordinates. The effects of large-amplitude bending such as occur
in the C3 molecule are analyzed, along with anharmonic effects, which split
the usually degenerate bending mode energy levels. Finally, the vibrational
frequencies, degeneracies, and symmetry properties of XYj3, X;Yz, and XY, type
molecules are discussed.

6.2 INTRODUCTION

The vibrations of atoms in polyatomic molecules can be approximated by
the harmonic oscillator model as well as in diatomic molecules. To decouple
the various modes, the energy must he expressed in normal coordinates which,
by definition, are those coordinates in which cross-product terms vanish in
both the kinetic and potential energy functions.

6.3 NORMAL COORDINATES

Let the position of 7 nuclei in the molecule be given by Cartesian
coordinates of each nucleus relative to its equilibrium position (fig. 6.1):

Ui., = (8 - Tedg
q3i-1 = (y - ye)i 1= 1, 2» » (6'1)
q3i = (Z = ze)i

The kinetic energy can be simply expressed as
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= m.q . (6.2)
. ) b R
1
Y while the potential energy may be
expanded in a Taylor series about the
Y) equilibrium position as
X
23 2
VeV, 2( )
X
] 24
& NEED M YT I P (6.3)
2 4 j zaqiq'] . [ L] .
X3 M4 y4 '
where the coefficients b;; are the
/// second partial derivatives
Xq ETC.

rYa
bij (a 2.0 qj)e {(6.4)

Choose the reference energy so that

Vo = 0. At equilibrium, the potential
is a minimum so the derivatives
(3V/3q;),. all vanish. Terms of higher order than second can be neglected for
sufficiently small vibrational motion, and thus V may be approximated as

Fi -ure 6.1.- Cartesian coordinates
for displacement of atoms from
their equilibrium position in
polyatomic molecules.

1

The Lagrangian equations of motion then take the form

d [T v
£8) 2o

-

N

My * ?;-:1 bd; =0, K

1.2, ..., 3 (6.7)

Generally, these equations are not separable. However, a linear trans-
formation to a new set of coordinates can always be found such that cross-
product terms in both equations (6.2) and (6.5) will vanish. Thes: are the
normal coordinates @

Q = ap:q; k=1,2,.. ., (6.8)
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in which kinetic and potential energies take the form

T3 gakkékz (6.9)
Vi %bkkakz (6.10)
Then the Lagrangian equations of motion becomes
alk * bk =0, k=1,2, ..., 3n (6.11)
for which the solutions are
Qk = Qka ciukt (6.12a)
w = (pplag)t'? (6.12b)

where the constants Qj_  are the initial amplitudes. Each normal coordinate
Qx undergoes harmonic fotion with frequency wy, independently of the motion
in the other coordinates. The normal mode corncept is a useful approximation
to the extent that truncation of the potential energy to include only second-
order terms is valid. For large-amplitude vibrations, the higher-order terms
become important; then the motion cannot be completely described by a set of
normal mode or Larmonic motions.

Problem 6.1: Show that if the Hamiltonian is a sum of terms t!at are cach a function of only one coordirate
Q:

n

HQ Q2. .« Q) ® 2:: Hy (@)
wl
the wave function is separable with the form

n
W(R1,Q2.. .+ «4ln) -Jkamm
=]

where the individual mode wave functions y; are solutions to

Hiby = Evp
and the total energy is the sum
L= ﬁ Ty
ke

Show that where the kinetic and potential energies are the harmonic oscillator expressions in normal
coordinates (eys. (6.9) and (6.10)), the terms in the Hamiltonian are given by

2 2
Pe® |, B

2ays, 2

Hy = Q?

where Py is the generalized momentum coniugate to the coordinute Wy» the partial derivative of the Lugrangian
L for T-V) with resp. ct to Qp:
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Then the wave equation for 1) hecomes i
22y 2e appe,?
GV Rk Kk .
T (e e k
Transform to the dimensionless normal coordinate .
40 172 ) } ‘
E ,
and show that the wave equation for wk becomes
2 . .
c_i_i’i - gi -y 2) = 0 4
dykz "“’k k .
for which the solutions are the same harmonic oscillator wave functions
2 }
b ) = N, eV 2, ,
found for the diatomic oscillator.

Generally, finding normal coordinates by diagonalizing the kinetic and ;
potential energy expressions is tedious. However, the equations of motion can ;
be used directly to find the allowed circular frequencies wg. Let all ampli- 5
tude constants @z . vanish except one, say Qio' Since the ¢q values are
related to @ values by the inverse linear transform to equation (6.8);

in ‘
= 2 Bk, k=1,2,..., 3 (6.13) -
1=1
each q; coordinate will also vary harmonically with the same frequency w
when only one normal! mode is excited. Let
Twt . s
g = qx, © . k=1,2, ..., 3n (6.14) ‘
ge] ‘1’
where x, = BkiQio' Substitution of these expressions for g into the A
equations of motion, equation (6.7), yields the set of equations: *ég
3n f
2 . = =
-w mquo + 2: biquo =0, k=1,2, . . ., 3n (6.15) :
1=1
Equation (6.15) is a set of 3n simultaneous equations to be solved for the
3n unknowns, qk,. From the thecry of linear algebraic equations, a solution i
exists only if the following determinant vanishes (refs. 1 and 2):
154 :
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m myp M3n !
b2y 22 _ 2 by,3n
m myp m:m
(6.16)
b3n,1 ban,2 3 2
my my ) M3y

This relation provides an equation of degree 3n to solve for the allowable
values of w and is known as the secular equation,

In deriving equation {0.15), a coordinate system (fig. 6.1) that
diagonalized the kinetic energy expression, equation (6.2), was chosen. How-

ever, this is not essential. Sometimes it is most convenient tc use symmetry
coordinates that do not diagonalize either the potential or kinetic energy
expressions. In a general linear transformation of coordinates, the kinetic
energy becomes a quadratic expression of the form

1 .
T=3 37: a; 744 (6.2a)

where the coefficients a;; represent the second partial derivatives of
kinetic energy with respect vo the generalized velocities q9; and ¢., that is,
(aleaéiaé-). In this case, if all normal coordinate amplitude constants are
allowed to vanish except one, and equation (6.13) for the coordinate qj is
substituted into the equations of motion,

s 3n in
wr Z; xdio) * ZE bidio) =0  k=1,2,. . ., 3
1= 1=

The secular equation to be solved for the allowed roots of w
general case

(6.15a)

is, in this

(b1 - a110?)
(b2) - az1w?)

(b3 - azjw?

(b12 - ayw?)
(b22 azaw?)

(b32 - azpw?)

(b13 - ay 30w?)
(ba3 - az3w?)

(b33 - azzw?)
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Often the molecule possesses some symmetry, in which case many of the
off-diagonal elements vanish for any plausible model of the potential energy
function. Then the secular equation breaks up into a set of lower rank deter-
minants that can be solved more easily. Of course, if the normal coordinates '
are once found, in which kinetic and potential energy functions have the form o
of equations (6.9) and (6.10), respectively, then the allowed values of w

are determined most simply from equation (6.12b). As examples, consider

linear symmetric triatomic molecules (such as CO;) and nonlinear symmetric

triatomic molecules (such as Hy0). !

6.4 LINEAR SYMMETRIC TRIATOMIC MOLECULE XY, .

The linear symmetric triatomic molecule configuration is shown in
figure 6.2. Symmetry occurs when the atoms at the end positions are identical.
The bond distance betw2en adjacent atoms is d.

Consider Cartesian coordinate systems with
S .{::>--—--{::}————{::>—-s, their origins at the equilibrium position of
(@) the atoms and the x axes along the molecular
axis. Define the coordinates ¢, and q, as

2(m, /ma)S2 the deviat@on from the equilibrium distances
between adjacent atoms:
@---- ____@ q, = 2 - 7 (6.17a)
Sz (b) S2 q, = x3 ~ Xy (6.17b)
and the coordinates ¢, and ¢3 as the bending
2(m,/m2)53 . .
angles in the xy and xz planes, respectively.
S5 ""‘(::*Es For very small deflections,
(c) 1
¢¢ =7 W1+y3-2y2) (6.17¢c)
Figure 6.2.- Normal coordi-
nates for linear symmetric 1
triatomic molecules. ¢b =3 (21 + 23 - 233) (6.17d)

Since the potential energy function is not known, a plausible model must
be postulated. The value of the model is then assessed by the accuracy with
which it can be fit to spectroscopically observed energy levels. A model that
can be reasonably well fit to at least the lower vibrational levels of linear
symmetric triatomic molecules is the following:

[N

k k d?
V=30 800, ¢ 507 ¢ 5 608+ D) (6.18)

The physical interpretation of this model is that k is the force constant

for the X-Y bonds, 8 is the force constant giving the effect of the inter- P
action between the two bonds, and e 1is the force constant for the bending of

the molecule. One can anticipate the interaction constant § to be quite

small and, as a first approximation, the simple valence bond model assumes
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that it vanishes. However, three different harmonic vibrational frequencies
are observed experimentally and at least three independent interaction con-
stants are required of any potential model before it can be matched exactly
to these observations. (Additional constants would be required to match the
observed anharmonic effects, of course, just as for the diatomic molecule.)
Therefore,a finite value will be retained for 8 to illustrate how the normal
mode solutions for triatomic molecule vibrations vary with this parameter. In
terms of the Cartesian coordinate system defined in figure 6.1, the potential
model in equation (6.18) becomes
2V = k(212 - 2zy2p + 22092 - 220523 + 3)
+8 (22125 - 22123 - 2.1:22 + 22o23)
+e(y 2 - Ay, y, + 2 +4y,2 -4 +y 2
1 W2+ eyYatdys YoY3+Y;

+212 - 82125 + 22123 + 43,2 - 42523 + 332) (6.19)

while the kinetic energy in these coordinates is

2T = ml:blz + YTI2.‘E.'22 + ml:i:32 + mlglz + m2y22 + m1y32 + mlélz + mZézz + m1é32 (6.20)

Grouping like terms in the potential equation makes the secular equation (6.16)
somewhat easier to set up:

2V = kxy2 - 2(k - §)xy2p - 262103
+2(k - 8)ap2 - 2(k - 8)zpxy + k32
+ey % - dey 1y + 267195
+4ey,? - Aey Y, + ey 52
+ezl2 - 4ez,3, + 2e2123
+4e2,2 - dezyzy + €332 (6.19a)

The secular equation is found to be the product of three 3 x 3 m. <es, one of

which is
L) 3 IR
.__w - S —— -
my ma my

_(E_'_Q (2_7<_'2_‘5-w2) (k_—‘S =0 (6.21a)

ry my my

§ ) (k -8 (k 2)
-t ~{— —=—-w

m m2 my

while the other two are the identical matrices:
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The determinant equation (6.21a) may be solved by subtracting the third column
from the first coluun and then adding the first row to the third row. This
operation results in

n
o

(6.21b)

k+s z) - (&9 (L
m Y my m
2k - 26 2) k-68\1|._
0 ( - -G =0 (6.21c)
0 _ 2k-26) (k-&_wz)
my my
for which the solution is
+ 6 AL _ 2 - sl s 2 -
( e w)[w w4 (k - &) 1y + mz)] =0 (6.21d)
The allowed roots for w? are found by setting each factor equal to 0:
2 _ k+36 P
m2=(k-5)—-+i (6.22b)
3 m, .

The third root is found by solving the determinant equation (6.21b). Again,
subtracting the third column from the first column and then adding the first
row to the third row, one obtains

() (%
0 ;—Z-wz) - (:—:) =0 (6.21e)
o (@) (-9
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for which the solution is

i

2[4 - w29¢ (L + 2V =
W En w<2e (m1 + mZ)] =0 (6.21f)

The nonvanishing root in equation (6.21f) is

1 2
wzz = 29(;"-—1— + ,—n—; (6.22(:) l §

AT R

A
-

Sy

The allowed values of w found in equations (6.22a, b, and c) are given .
the subscripts 1, 2, and 3, according to accepted usage. The circular fre-
quency w) 1is associated with symmetrical stretching of the molecule, ws, is
associated with the bending motions, and w3, with asvmmcirical stretching.
Normally, these frequencies are the observables, and the force constants that
fit the potential model in equation (6.18) to these frequencies are

o,
i

mywg?
1+ (2my/my)

2k = mwy? + (6.23a)

ml“’32

G (6.23b)

26 mlmlz -

'"1“22

2¢ = I—:W (6.23(:)

Problem 6.2: Show that when masses m; and my are given in AMU (atomic mass unit, M= 1.660x10°2% gm) and
frequencies wj, wy, and w3 in wave numbers, the force constants k, §, and ¢ are given in units of 4n2Mc? or
5.889x10°2 dyne-cm. Find the force constants for (O0- for which w; = 1337 em-!, wy = 667 cm~!, and wj =2349 cm-l.

Note that if 6 = 0O,

2m
2.k 2.2 m 2.k 1
YU T E e 2 Ty (l *m) Y Tmltm

Find the force constants for (0, which fit the potential model with & = 0. (Two values are obtained for k -
one for the observed value of w), another for the observed value of wj;.) Compare these results with the values
found above when § is given a finite value. \

Normal coordinates may generally be rather complex expressions, but for
linear triatomic molecules they are rather simple transformations of the e
Cartesian coordinates shown in figure 6.1, which leave the center of mass -
unchanged. The linear molacule therefore provides a good example of the use i
of normal coordinat~s, without too much algebraic detail,

6.5 NORMAL COORDINATES FOR LINEAR SYMMETRIC TRIATOMIC MOLECULES

A set of normal coordinates S;, S, and S3, which leaves the center of
mass unchanged and causes the cross-product terms to simultaneously vanish in
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the kinetic energy function and in the potential model in equation (6.18), is
shown in figure 6.2 for the linear symmetric triatomic molecule. (S; is a
symmetric stretching mode, S3 is an asymmetric stretching mode, and S; is a
bending mode.) Two independent bending modes, S,, and Sjp, occur which are
orthogonal to one another; one mode is shown in figure 6.2(b) in the plane of
the figure, the second motion occurs in a plane perpendicular to the figure.
Multiplication of the coordinatec by constants will not change the essential
relations involved, provided the center of mass is unchanged. For example,
the bending modes could be equally well described by a coordinate change for
the end atoms of either m»S; or myS,/2m; if the center atom motion were
taken to be 2m;S,; or S, respectively.

The Cartesian coordinates relative to the equilibrium positions shown in
figure 6.1 are related to the normal coordinates by

x) = -(Sl + 33) yl = -Sza 2y = -SZb

2m _2m . m
x2 = 721‘53 Yy * "n‘,f'sza 52 = "rﬁiLst ’ (6.24)
xy = 5} - 53 Y3 = -5y 23 = -Spp |

Thus, the kinetic energy in normal coordinates becomes

m.
D DR T R PR T
1=1,2,3
. . . 2m .
= 77'1[912 + <1 +2ml21-)(S§a+S§b) + (1 +-’#> 532] (6.25)

The coordinates in equations (6.17a to d) are

- 2m .
qy =5, + (1 + m2> S5 (6.26a)
-3 1+ M) (6.26b)
q2 = ©1 - my ] V3 .
2 2m
ba = - 3 (1+ 32 S2a (6.26¢)
_ 2 2my
= -3 (1 + “mz)sza (6.26d)

and the potential energy function in equation (6.18) thus becomes
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2 2, 5 m\? g2 | o2 |
3 V= (k+8)S1e+(k-8){1+ - S3c+ 2|l + - (S24 + S5p) (6.27) .
2 2 /
e The normal mode frequencies w,2 can be obtained by inspecting equa- é “f
ok tions (6.25) and (6.27) since they are simply the ratio 0pj/ay, of the con- :
K stant coefficients in equations (6.9) and (6.10) (see eq. %é.le)): . :
;
i 2 _ Y11 _ + 6 3
A w S m—— = 6.283 :
o ' an my ( ) j
3 b 2 2m o
by 2 - 22 = i‘—e_ (l _1_) v
& (] + 6.28b !
i 2 azz m ma ( )
by _ k- & m ‘
¥ 2 - —33 = —_—— (1 + -—1) 6.28¢c .
5 “3 as33 ™ m2 ( )
? These results are the same as obtained from solutions to the secular equation
£ (eqs. {6.22a to c)). This example shows that the relations between the force
z constants and the vibrational frequencies can be found most easily if the -
. normal coordinates are found first. Note, however, that the approximate nor-
: mal coordinates depend on the potential model chosen.
s

Problem 6.3: Note that only four of the nine Cartesian coordinates in figure 6.2 are independent; the
remaining five are dependent because the center of mass must remain fixed. Choose =z, x3, ¥), and 27 as the set
of independent coordinates, then find the remaining Cartesian coordinates in terms of this set. Also show that
the normal coordinates are in terms of this set:

S1 = - 3 (@1 - 73) :
S3 = - % (x) + 23} )

4
S2a = ¥, ’
Sp = =%

6.6 NONLINEAR SYMMETRIC TRIATOMIC MOLECULE XY,

The nonlinear symmetric triatomic molecule is particularly important : r
because the ubiquitous H,0 molecule is a member of this class. In this case, 3 o
the normal coordinates are not easy to derive, but symmetry coordinates can be
found in which the solution to eguation (6.16a) becomes relatively easy. More
than one set of such symmetry coordinates is possible. For example, the coor-
dinates diagrammed in figures 6.3(a) to (c) are used here, but the coordinates
shown in figures 6.3(a') and (b') are alternate choices ror the coordinates in
figures 6.3(a) and (b), respectively.

a\

The choice of potential function is not an obvious one for the nonlinear f
molecule. If the angle a 1is large enough that the end molecules are much
farther from one another than from the central atom, a potential of the same
form as equation (6.18) should model the molecule reasonably well:
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= = 2
/GD ( ) V=39°*49
d 2
A \ k ed? .
Al SN P e (6.29)
JONNONNOI O
Si (@)

S (a) Physically, this represents a harmonic

restoring force directed along each

2{my/mg)S;sina 2(m/m)S2  valence bond direction with a coupling
term and a single harmonic bending

mode in the plane of the three atoms.

AN SN The angle ¢ represents the deviation
(::2\ /K::) <;:) (;:) of a from its equilibrium value.
The distance between the end molecules
S2 S S2 , S2 is 2d sin a. For Hy0, a is observed
(b) (b} to be 52.5°, so the distance between
the two H atoms is 1.587 times greater
2(m,/m,)Ss sin @ than the distance between the H and O
/ . S3 atoms, and equation (6.29) should
¢ represent a reasonably good potential
ﬁ::) ?::) model. The angle a is generally 45°

or larger in real nonlinear symmetric
molecules (see table 4.3); therefore,
equation (6.29) is a reasonably good
Figure 6.3.- Symmetry coordinates for choice in any such case for a poten-
nonlinear symmetric triatomic tial with three independent force con-
molecules. stants that can be fit to the three
observed fundamental frequencies,

S3 {c)

The coordinates g,, q,, and ¢ expressed in the symmetric coordinates in
figure 6.3(a) to (c) are

2m .
q, = (1 +—2”:,—'21- cos? a)Sl + (1 + 2”77'121 sin? a).5'3+(—%1— 8in a cos a)Sz (6.30a)

_ 2m 2 I (2"11 .
q2 = (1+-Ez-cos a)Sl- (1- mg—szn a)S3+ 7 8in a co8 &)Sz (6.30b)

2[f(2m . 2my .
¢ = - 2[(7”;1- 8§1n o Co8 a)51+(1 +-E sin? a)Sz] (6.30¢)

Thus the potential in symmetry coordinates becomes
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Vs [(1+ 2" w02 a) (k+8)+ 2(-2-:-23- 8in o cue a) e]Slz

+(ﬂ1 8in a cos u)[(l LY cos? a)(k+ ) + 2(1 + 24 gin2 u)e]8132
hy ma my

o G g

-
RO, P

2 2
+[—7;’n£21- 8in a cos a) (k+6) +2(1 +%1- 8in? u) e]szz

m 2
+ (1 “"m'il 8in? a) (k - §)532 (6.31)

The kinetic energy in terms of the symmetry coordinates becomes .

T %L (51 + 83)2 +m 5,2 +"%L (81 - 83)2

, . . 2 om 2
, M (2m My g my (2
+ (m2 Sy coe a+ iy S, 8in a) +3 ( m Syein a) (6.32)
b - 2m 2 & 2 4my . )é :
T=m [(1 +E- cos a)Sl +(—m2 8in a cos a}51S,
*
o M pin? o)8,2 M) oin2 o)3.2
, + (1 +W 8in a)32 + (1 + s 8inc a)S3 (6.33)

The partial derivatives a;; and b;; defined by equations (6.2a) and
(6.4), respectively, are easily ﬁeduced 'gy inspection of equations (6.31) and

(6.33) to be

2 :
b“-(l +2—:51- cos? a> (k+6) +2(—— 8in a cos a) £ \ ]
b12'1;1-(%l 8in a cos a)[(l +-2’%1- cos? a)(k+6) +2(1 +-’-n2%1— gin? c)e] 4

2”'1 . 2 2"1 » 2
bzz'(-,g 8in a cos a) (k+8) +2(1 +7n—2— ain? a) €
2
b33-(1+%"-21— gin? a) (k - 6) ‘r (6.34)
2?721 2
an-ml(l +—m-2—- co8 a)

2my .
ajz =azi1=m -;’2— 8an a cos a

2m1 . 2 )
s =azz=mil +—= ginc a
22 33 1( my J
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The remaining second derivatives J,3 and a3 vanish because of the choice of
symmetry coordinates. Thus, the secular equation (6.16a), for the allowed
circular frequencies, becomes
(b11 -anw?)  (b12 - ajau?) 0
(B12 - ay2w?) (b2 - azzw?) 0 =0 (6.35)
0 0 (b33 - azw?)

One root of the equation is immediately apparent

b 2m k-8
2 - Z33 = 1 202
w3 33 (1 + > an G) ) (6 . 36)

Note that this reduces to the same value given by equation (6.22b) for the
linear symmetric triatomic molecule when a = m/2., The other two roots are
solutions to the quadratic equation
2 2
(an1az2 - a12)uw" - (a11b2; - 2a12b12 + azzb11)w? + (by1bag - b12) = 0 (6.37)

In the present case, the coefficients of this quadratic equation are

2
a = ayjazs - a%z =m12(1 +Tm21—) (6.38a)
2
b = ayybyz - 2a12b12 +az2byy = ’"1(1 + 2L 4082 0)(1 +—2ﬁl-)(k+ 8)
m2 m2
+2my (1 +2Tl sin? a) (1 +—2Tl-) £ (6.38b)
ma mz
2 2my \2
e = b11b22-b12=2 14'—m? (k*’G)E (6.380)

The solutions for w? may be characterized rather simply by the sum and
product of the roots:

2,,.2=02. m .2 Y kS m .2 o) £
w1+ wg 2 (1 + " cos a) m + 211+ s 8inc a my (6.39)
24,2 = 2 = 2m ) (k+8)e
wycwy a 2(1 + my ) m12 (6.40)

Again, these are the same expressions obtained for the linear symmetric
molecule when a = m/2.

Problem 6.4: The observed fundamental frequencies and bond angles for H,0 are w; = 3652 em”!,
wp = 1595 em™!, w3 = 3756 cm~}, and 2 = 105°. Solve for the values of k, &, and ¢ that fit the potential model
in equation (6.29) to these values. Show that
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k = 7,62x105 dyne-cm
§ = -9.43x10% dyne-cm
€ 7 6.97x10% dyne-cm
Note that the coupling coefficient § is negative rather than positive, as for (0;.

Problem 6.5: Another potential model often used is the harmonic, thrvee-valance-bond model without cross-
coupling. The deviation from equilibrium distance between the end atoms is

qy * 2d$ cos a
and the potential in equation (6.29) with & = 0 becomes
k k k'
"'}"'12’7‘*’22 * 7 a4y
where

Kt 2 ——t

t
4 coe? a

This potential model might be expected to be reasonably valid if o is the order of n/3 so that the three atoms
are approximately equally spaced. Another constant would be required to fit the three observed frcquencics, of
course, but the model would give approximately valid results if the cross-couplings are all small.

Show that

Note that the solution breaks down for o = n/2 since the last equation requires that ) or w; vanish,
However, for the usual nonlinear, symmetric triatomic molecule, u 1§ the order of n/4, and the results are
similar to the results in equations (6.36), (6.39}, and (6.30),

6.7 APPROXIMATE NORMAL COORDINATES FOR H,0

The normal coordinates for nonlinear molecules are not generally aligned
with the interatomic distance vectors and they are rather involved expressions
of Cartesian displacements and bond angles. However, a simple limiting case
occurs when the central atom is much heavier than the end atoms, a close
enough approximation to the Hy0 molecule to afford a qualitative understanding
of the vibrational modes in that molecule. In this limiting c2se, the center
of mass is fixed on the central atom and the normal coordinates become the
.ame as the symmetry coordinates shown in figure 6.3 if the mction of the
central atom vanishes. Then the interatomic bond distances are

q, * 51 + 53 (6.41a)
9, = 51 - S3 (6.41b)
and the change in bond angle is
4 =25, (6.41c)
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The kinetic energy expressed in these coordinates is
g m )1 . L] m ] .
? ) '-51- [(51*'53)2*322]*—21‘ [(8) - 83)2 +5,2)
f = my [512 + 5,2 + 542) (6.42)
while the potential energy in equation (6.29) tak~s the form
Ve 15148202+ (51 - 53)2] + 8(51 +53) (51 - 53) + 26572
, = (k+8)Sy2+2eS,2 + (k-6)S32 (6.43)
The approximate normal mode frequencies are immediately apparent from
inspection of equations (6.42) and (6.43):
w2 =aL krs (6.44a)
a1 m1
b
: 2 522 . 2¢
: w2 Gon - my (6.44b)
b k -6
nl n 3l a
- N3 ass m (6.44C)

and the approximate force constants in terms of the observed frequencies are

m

k== @2+ ws?) (6.45a)
m

§ = -3— (12 - w32) (6.45b)
m

€ = -51— wp? (6.45¢)

These results are the same #s obtained from equations (6.36), (6.39), and
(6.40) when the mass ratio m_-m» 1is allowed to vanish; i this case, the
bond angle o 1is irrelevant. Results are insensitive to bond angle whenever
the ratio m/m, is small.

Problem 6.6: Show that the approximate force constants for 4,0, obtained by treuting the central 0 atom
as infinitely heavy, are

k = 8.08x10° dyne-cm
§ = -2,30x10° dyne-cm

€ = 7.48x10" dyne-cm
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Observe that the results obtasined by this approximation are only about 5 percent different for % and ¢ from the
results obtained in problem 6.4, but the coupling constant & is about twice as large as given by the more
acc..ate treatment,

6.8 DEGENERATE VIBRATIONAL MODES

The linear triatomic molecule has iwo equivalent modes of bending vibra-
tional motion which have equal energy levels, so these modes are doubly degen-
erate. The total vibrational energy of the molecule is

rACICRS ) REICWES ) EEICHES JRTRCRS ) (6.46)

and the total wave function is the product of normal mode wave functions

2 2
-(y 12+y2a+y2b*y 32) r2
v=Ne Hyy (1) Hy, , (¥ o, U o) o4 (y 5) (6.47)

where v;, V,5, V,3, and v3 are the quantum numbers for the four normal mode

vibrations and N is the normalization constant (the product of four separate
= normalization factors given by eq. (5.19a)) and y,; are dimensionless normal
coordinates used in problem 6.1:

> ceswe\L/2
yi = \—’——‘ ’) 5; (6.48)
The modes with equal circular frequencies w; can be combined to yield
E
Z= o o . wz(vz «+ D)+ L. (6.49)

where v; represents the total quantum number
V2 = Uy *+ VUgp (6.50)

Note that the ground-state energy is Xw, for these modes. The degeneracy of
the state with quantum number v, is

g(va) =vy + 1 (6.51)

corresponding to the number of diiferent ways v,, and v,p can be selected to
add up to v

Vyg = 0, 1, 2, .. ., vy
Vop = U, V2 - 1, vy - 2, , 0
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Problem 6.7: Show that the partition function given by the product of two identical simple harmonic oscilla-
tor partition functions is the same as the partition function for an oscillator that has a degeneracy (v + 1) for
each level. Use i‘he ground state as the zero reference energy level,

2
» @ -2
Q= [2: ‘-v(&w/kf)] <Y - e /kT) (1 i} e-hu/kT)
v=0 v=Q

In the general polyatomic molecule, several modes of vibration may be
degenerate and the energy can then be expressed as

§= o -“’i(”i*%)+ . (6.492)

where n; is the number of degenerate modes with the same circular rrequency
w;. The total quantum number v; represents the sum of n; vibrational
quantum numbers

(6.50a)

and the degeneracy is the numb :  ways <; positive numbers can be chosen
to add up to v;:

(vi +n; - 1)!
ngt(ng - 1)!

glvy) = (6.51a)

Complete decoupling between vibrational modes occurs only when the poten-
tial is purely quadratic in form as in equation (6.5). Actually, some arhar-
monicity is always pre.ent, corresponding to finite third- or hijgher-orde:
partial derivatives in the potential function. Then cross-coupling terms
appear whick cannot be made to vanish in both potential and kinetic energy
expressions by any linear transformation of coordinates. This coupling splits
the energy states, and the level of degeneracy g appears as g separate
lines. For example, consider two equivalent oscillators of mass m and
resonant circular frequency « which are coupled. The potential is expressed as

mZxIZ mm".xZZ
V= 3 + 2 + mezmlxz {6.52a)

where me? is a force constant representing the effect of the anharmonic per-
turbation coupling. In normal coordinates,

L

S = 75 (x1 + x2) (6.53a)
S, = % () - 2) (6.53b)
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This potential becomes ;

V=3 @2+e2)5)2 43 (02 - e2)5,2 (6.52b) /

while the kinetic energy is

7 =% (512 + 52 (6.54) S
Solutions to the equations of motion are

2..2v1/2
Sy gt (uTret) ot (6.55a)

S10

ei (w2_€2) 1/24

Sy = Syg (6.55b) ;

For these normal coordinates, the system is in steady state, with each normal %
N mode oscillating independently. In terms of the individual oscillator dis- ¥
placements x; and x,, the system appears to be in resonance, with a transient
surging of vibrational energy back and forth from one oscillator to the other:

(6.56a)

+ 89 @

—

(2423172
1{we+e t
) ,fz'[slo e ( )

i(m2-52)1/2t]

Pr2.2271/2 Pra2_c2Y1/2
-}-_2_ [510 et WD)t g o gt WES) t] (6.56b)

T2

However, the transient appearance of the resonance phenomena is merely an
artifact introduced by viewing the system in other than normal coordinates.
The total system is in a dynamic steady state, which becomes evident when the
system is viewed in normal coordinates.

In quantum mechanics, tuc coupled system has the quantized energy levels
E = (ul+%)h(m2+52)1/2+(vz+%)h(w2-e2)1'2 (6.57) -

where v; and v, are quantum numbers for the two unperturbed normal modes. , :
For small coupling, e << w, this may be expanded to R

2
E=ﬁm[(u+1)+l§%7+. . ] {6.58)

where the tctal quantum number v = (vy + vp) and 7 = (v; - vy) or (v - 2v,). , -
There are v+ 1 distinct levels symmetrically placed about the central energy '
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level (v+ 1)Aw associated with the different values of v, - v,, both positive
and negative, which the difference between two integers that sum to v can
take. The spacing between levels #w(e?/w?) is prorortional to the strength
of the coupling force constant €2. The splitting and degeneracy of levels
for a doubly degenerate set of vibrational modes is illustrated in figure 6.4.
Usually, this splitting is very small for the lower vibrational levels, but
the anharmonic effects can become more pronounced in the upper le -els.

The vibrational state of triatomic molecules, whether linear or nonlinear,
is, by convention, design: ced by a brace of three numbers (v;, vy, v3), where
v1 1is the vibrational quantum number associated with the symmetric stretch
mode, v, 1is the quantum r mber associated with the bending modes, and v3; 1is
the quantum prumber associated with the asymmetric stretch mode. If the mole-
cule is nonlinear, only one bending mode in the plane of the three atoms is
involved. However, if the molecule is linear. the bending modes are doubly
degenerate and v, then designates the total quantum number v,, + v,3 and
is given a supercript || that is the absolute magnitude of the difference
(vaq - v2p). That is, the state is designated by thL: brace (v, v51|, vg).
For example, the (1, 31, 0) state of CO, indicates that one quantum of vibra-
tional energy is excited in the symmetric stretch mode, three quanta of energy
are excited in the bending modes with two quanta in one degenerate bending
mode and one in the other, while the asymmetric stretch mode is in the ground
state. Another state with nearly the same energy is (1, 33, 0); in this case,
all three quanta in the bending modes are in one of the degenerate modes while
the other mode is in the ground state. The phase angles of classical motion are
such that the 3l state has one quantum unit while the 33 state has three
quantum units of angular momentum in the bending motion.

6.9 FERMI RESONANCE BETWEEN STATES

States that are not degenerate will also be coupled to one another by
anharmonic terms in the potential. The wave function can then be expressed as
a series expansion in the orthonormal set of wave functions yz® as

W = 2 aubr’ (6.59)
k=0

which are first-order solutions in terms of normal coordinates Y. obtained
when the anharmonic terms are neglected:

VWl - ) = YU, ) iy () (6.60)

and the ui(yi) terms are the single-mode harmonic oscillator wave functior..

In actual practice, orni, those states that are very close to one another in
energy are effectively coupled, and even then only if the wave functions have
like symmetry properties. The coupling effect is called Fermi resonance, in
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Figure 6.4.- Energy levels for a doubly degenerate set of vibrational modes.
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deference to the analogy with nearly resonant classical oscillators, but the
word resonance should not be construed to imply a time-dependent state. The
coupled states are in steady state at steady-state perturbed energy levels and
with steady-state mixed wave functions. Often, only two levels are involved
in any one set of coupled states. In this case, Fermi resonance can be illus-
trated by considering a two-state system with levels 1 and 2. The wave func-
tigns are Eaken to be linear combinations of th. unperturbed wave functions

¥, and L 2%

v = an? + ag,” (6.61)
with constant coefficients a; and as.

Perhaps it is appropriate at this point to note that the term '"mixed"
wave function denotes the approximation in which the wave .[unction is taken to
be a linear sum of "normal" wave functions as in equation (6.59) or (6.61).
The coefficients may be constants, as in the steady-state problem considered
here, or functions of time if the wave functions and energy levels are being
determined for a time-dependent perturbation. Usually, these coefficieuts
squared are interpreted as the probabilities that the system resides in a
state represented by the corresponding normal weve function. However, note
that the wave function can be expanded in any orthcgonal set, and the coeffi-
cients squared then represent the probabilities of teing in a completely dif-
ferent set of so-called "normal" states. For a time-dependent perturbation,
the concept of normal and mixed states has more physical meaning in that the
system is required to be in one of the normal states before the perturbation
event, and then ends up with certain probabilities in one of the available
normal states after the perturbation event. The mixed states are merely
states that the system may take during the perturbation. 1In the present case
of Fermi resonance, however, we are considering a steady-state situation in
which the third- and higher-order derivatives in the potential are permanent
and normal. The so-called mixcd state is the normal steady state, and if we
knew how to express the wave functions for these states exactly, we would
describe the system in any one of these states with a single wave function
with nu concept of nixing whatever.

The Hamiltonian operator is now taken as the sum ﬁb + ﬁ“, where Hy
contains the domirant quadratic terms in the energy which lead to the harmonic
oscillator solutions in terms of normal coordinates (eq. (6.60)), and H'
represents a perturbation provided by the higher-order anharmonic terms in the
Hamiltonian. Since Hyy,? = Elowlo and Hoy,0 = E,0%9,7, where E0 and E,°
are the harmonic oscillator energies, the Schroedinger equation becomes

(Hy + BV =E(@v10 + ag0%) = a1E1 %10 + @y, 00,0 + ay B0 + a0 (6.62)

Equation (6.62) is first multiplied by wlo* and integrated over all space
and then again multiplied by ¢,0* and integrated over all space to yield a
set of two simultaneous equations to solve for the constants a; and aj:
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(EIO-E’)CII*'(IlHll*‘azle =0 (6.63a)
(E50 - BYay + ayHyy + agHyp = 0 (6.63b)
where the matrix elements H;; are defined as
Hii = fw.o*ﬁ'wﬁ dt (6.64)
1 7 J )

We need not actually solve for the constants a; and a; to obtain the
allowed energy levels, for the simultaneous equations (6,63a) and (6.63b) have
finite solutions if and oniy if the matrix equation

(B,0+Hy, - B) Hyz
=0 (6.65)
Hpy (B2 + Hyy - E)

is satisfied. The two roots of this determinant are

‘% [(E10+ 1)) + (B2° +H22)]+—/[(E1°+H11)-(E2 +Hp2) 12 + 4l 9Hy)
(6.66)

The perturbation potential is normally qominated by the third derivative
terms, so the perturbation Hamiltonian can be expressed as

Z 37 37, ay oy, ik (6.67)
’!7’

In this case, the matrix elements H); and Hy, both contain factors of the
form

Iyiuiz(yi)dyi or fyi3ui2(yi)dyi

where the u;(y.) ter-s are the single-mode harmonic oscillator wave functions

specified in equation (6.60), and these factors all vanish because of symmetry.

Thus Hj; and H;, can be expected to be very small, depending only on fourth-
and higher-order terms in the Taylor series expansion of the potential. In
addition, because the perturbation involves only the coordinates and no
momenta, the perturbation Hamiltonian H' contains no differential operators
with the result that H;, = Hyy. To a good approximation then, the Fermi
resonant energy levels given by equation (6.66) become

Elo + E20

E~-1—

1 N2 2 .
3 [(B10 - B9 + 4R2, (6.65a)




o oen 4 ¢ %

-y T - A

BN A I N L. T T g

e,

If the unperturbed levels are degenerate, that is, E1® = E,?, the perturbation
splits the levels an equal amount higher and lower in energy:

Ey,p = 510 ¢ Hyy (6.66b)

If the unperturbed energy levels have an energy difference small compared with
the perturbation matrix element H,,,
0 0 0 0y2
g, o, =FL *E By B
1,2 2 - 8Hyo - d12

(6.66¢)

and, finally, if H;, is small compared with the energy difference (Elo -E}o),
the Fermi resonant levels become

H2
N 12
1 2B+ —5 5 (6.66d)
El - EZ
H2
E, = E,0 - — 12 6.66

In this case, the upper level is elevated in energy and the lower level is
depressed by equal amounts - the same result given by small-perturbation
theory (eq. (5.40)) for a two-level system.

The third derivatives of the potential are not normally known a priori,
so the matrix elements Hj, are evaluated by empirically fitting the results
to the observed energy levels. Since taese elements are normally quite small,
only those levels with nearly equal energy, E;0 = Eﬁo, will contribute appre-
ciably to the Fermi resonance effect and often only a two-level system needs
to be considered. If more than two levels happen to nave nearly equal energy,
the same procedures are followed in setting up an m level system, miaing the
wave functions as rbove, and finally one obtains an m-rank determinant in
place of cquacion (6.65) to solve for the allowed energy levels. Not a’.
levels of nearly equal energy exhibit Fermi resonance, however; only those
having the same symmetry type will mix. If the wave functions have a differ-
ent symmetry in some of the coordinates other than the vibrational coordinates
(e.g., a rotational angular coordinate), the matrix elements for perturbations
of the type given by equati~n (6.67) will all vanish. Une would need to con-
sider rotation-vibration coupling to obtain expressions for the mixing of
states with different rotational symmetry. To some degree, all harmonic
oscillator states of the same symmetry are mixed by anharmonic terms in the
potential, and states of different symmetry are mixed by higher-order coupling
terms. One should, however, keep in mind that the real states are not mixed
at all - each is a pure eigenstate for the actual Hamiltonian that exists.

The so-called mixing of states is an artifact produced by the choice of rormal
coordinates in which the motions of the system are viewed or. in other words,
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the choice of harmonic oscillator wave functions as ar orthonormal set of
functions in which to expand the actual wave function.

Fermi resonance occurs between other internal energy modes, of course, as
well as the oscillator modes, such as rotational or electronic modes, whenever
the energies are close and the symmetries are correct. In any case, the anal-
ysis proceeds by the same general perturbation schemes outlined above.

Problem 6.8(a). Show that if the wavc runctio .

v1 = avr® ¢ appup’ {6.68a)
ba = a¥y s apv,? (6.68b)

are orthogonal and normalized, where w1° and w2° are two eigenfunctions of an orthonormal set, the constant
coefficients a;; must be related:

a1, = *ay (6.69a)
ayz = *ap (6.69b)

(b) Consider Fermi resonance between the states y;0 and ¢ O for E;9 = £,0 and Hy, = H,, = 0 and show
v 1 2 1 2 11 22
that the wave functions become

V1,2 = /L'Z' IR (6.70)

(c) Consider Fermi resonance between the same two states for Hyj = Hpp = 0, where Hyp << E10 - £,0, and
show that the constant coefficients may then be ex; ‘essed as

2
. 12 i
@2 = ajp =1 - 5 " (6.712)
2(E,% - E,9)
Hy2
apy = -ayp T ——a (6.71b)
E9 - E,0

Note that multiplying either of the wave functions in equation (6.68) by -1 yields the sdme solution, as indicated
by the sign permutations 1in equation (6.69).

For CO,, a strong resonance exists between the 1000 1evel and the 0200
level, but the 0220 level has a different symmetry and does not couple with
the 1000 level. To conveniently examine the symmetry of such states, the
bending mode wave functions next are expressed in terms of normalized polar
coordinates rather than the set Y and Yop used previously.

6.10 LINEAR TRIATOMIC MOLECULE BENDING MODES IN POLAR COORDINATES

The vibrational bending modes of a linear triatomic molecule were found
to have the wave function

(w2422 /2
b= Ny, e @152 2y )y, () (6.72)

This wave function can be expressed in terms of the polar coordinates p and A,
defined as

Y12+ 4,2 = 02 (6.73a)
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tan Z* = A (6.73b)
LP
. o /
Schroedinger's equation in cylindrical coordinates becomes |
-y
32y 1oy . 1 3%y '
apz + ) ap + pz 31\2 + = p ‘l’ = 0 (6-74)
l’ ¢
Assure the wave function is separable:
= R(p)2(}) (5:75) ‘
Substitute equation (6.75) into (6.74) and multiply by p2/R¢:
-fd£+&dﬁ+(§_pz)pz+l@=o (6.76)
R g2 Rdo " \py ¢ n2 .

The functions of p and A in equation (6.76) must each be constant to satisfy
the equation. Let

1 d%s
=22 272 (6.77)
L)\
Then the normalized solution for ¢ is
eiiZA
= (6.78)
Y2r

The quantum number 7 must obviously be an integer if the wave function is to
be single-valued. Only positive integers need be -onsidered since negative
values have been allowed for in the exponent. The remaining wave function for
R is

2 2
p2 &R AR (E__Z_-p>p23=o (6.79)

do? do \Aw o2

02
e /2, and the singular-
Let zx = p2, then

At p - o, the solution for R obviously vaiies as e
ity at the origin can be removed by factoring out pl.

2 )
Rp) = e ' 2pln02) = &2 21 () (6.80)

Substitute equation (6.80) into (6.79) and obtain the differential equation
for the function L(x):
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This is Laguerre's equation again, and a finite polynomial solution exists
when the last factor is

(_E__%_.é_)z,=(n-z)z; (6.82) o

where 7 is any positive integer from 7 to o, These solutions are the asso-
ciated Laguerre polynomials:

L= LnZ(m) (6.83)

The Laguerre polynomials are defined by

L,(x) = & AR (6.83a)

dz"

and the associated Laguerre polynomials by

1, _ db
In' @) = <7 In(@) (6.83b)

The first few Laguerre and associated Laguerre polynomials are

Lo(x) =1
ix) = -(x - 1)
Lylfz) = -1 ‘
Ly(x) = a2 - 42 + 2
Lyl (z) = 2x - 4 .
Ly2(x) = 2
Ly(x) = -(x3 - 922 + 18z - €)
Lyl(x) = - (322 - 18x + 18)
L3%(x) = -(6x - 18)
Ly3(x) = -6
177
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The list may be extended by means of the recursion relation:
Lyey (@) + (& -~ 1 - 20)L,(x) + n?L,_,(x) =0 (6.83c)

From equation (6.82), the allowed energy levels are

i%-= (n-1+1)=v+1 (6.84)

where v is the total quantum number 2n - 7. This expression is the same as
found in equation (6.49) “or the energy levels of two degenerate modes of
vibration. The total wave function in polar coordinates becomes

A

*1IA
w+1)/2(P

-nl
wvl = Rv°Z =N, e e /2pZL 2ye (6.85)

where p2 is a dimensionless normal coordinate that may be related to the
bending angles ¢, and ¢; by

2 _ W2a22 2 2
pé = - (52a + Szb) (6.86a)

For the particular set of normal coordinates chosen (see fig. 6.2), this
becomes

204 2 2
b2 = Y2 (1_'2m1 wyd®(9g° + $p°) (6. 86b)

e 3 sl § 2 2 =
o () Gha ) = E 7
m . m
The integer (v + 1)/2 must be equal to or greater than the integer I if
the Laguerre equation is to have a finite polynomial solution. Thus, there
are (v + 1) different wave functions that correspond to the values

1=0,2,4,...,0 if v 1is even
1=1,3,5 ...,v if v 1is odd

and that allow for both positive and negative exponents in the factor ettlA
except when I = 0.

Problem 6.9: Use the moment-gencrating functions for the associated Laguerre polynomials to evaluate the
normalization constant required for the wave function 1n equation (6.85):

@ I,g(.r)u" /(1= ),
bglr,u) = T : -
rEg : (1 -ux)

"
)
|
!
'
1
!
i
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Integrate the product a""a,"U,Va over all z from 0 to = to show that

rit! a8+l

Ezyfxﬁ [ttt o - G [T O 000 g
0 Q-0 0=y 0

r,t=2

_i (8 t'k)! (uy)mk

K=o

fsolate those terms where .» =t = (v + [)/2 and 8 = | and, by comparing coefficients, show that

- ve ) 1P
[y GEN

Show that the normalization constant in equatio~ (6.85) 15 given by

(E’._'.l) '
"/? L b 2 (6.88)

Yol o [(3“7'15"”3
)

Classically, the deyencrate normal mode vibrations can be coupied in any
arbitrary phase and th. zoupled motion follows an elliptic path in space which
will have angular momentum of any value from zero up to the maximum, where the
angular momentum energy equals the total vibrational energy. In this state,
the linear molecule is rolling in a permanently bent configuration such that
the centrifugal forcos balance the restoring forces. Quantum mechanically,
only those phase couplings are allowed where the angular momentum takes inte-
gral values of %, The total energy is not changed by the different values of
engular momentum if the small anharmonic effects be neglected - which actually
do split the degenerate levels slightly. The increase in rotational energy as
1 increases is balanced by a decrease in kinetic and potential energies asso-
ciated with changes in the bending angle. The doubly-degenerate modes are
designated by the index v“, where v is the total vibrational quantum number
giving the total energy and 7 1is the absolute magnitude of the rotational
quantum number which, to the harmonic potential approximation, does not affect
that total energy, but which establishes the symmetry properties of the wave
function. As previously discussed, the integer I 1is the absolute magnitude
of the difference between the quantum numbers of the individual modes f

When v) or v, = v, the motion is 90° out of phase with the ground-state
motion in the other mode and the angular mumentum is a maximum. The splitting
of lavels associated with a coupling frequency € is shown for the different
levels in figure 6.4.

We can now see how the symmetry properties of the wave function affect
the Fermi resonance coupling. The anharmonic terms are expected to involve
the bending angles and associated displacements, but because of symmetry they
cannct involve the angular position A, Thus, only those states can couple
where both values of 1 are equal; otherwise, the matrix elements U;, (sce
eq. (5.33)) will vanish.

The CO, molecule is a good example of the above. The bending-mode
frequency (w2 = 667.5 -m~1) is very nearly half the symmetric s:retch-mode
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frequency (w; = 1337 cm~!). Thus, the unperturbed energy levels (0, 2°. 0)
and (0, 22, 0) (1335 cm~!) are only about two wave numbers distant from energy
level (1, 00, 0), and the first requirement for Fermi resonance is satisfied,
namely, that the unperturbed energy levels are close. The 0, 22, 0 state will
no: couple with the 1, 00, 0 mode, Fowever, as the matrix element includes a
factor that vanishes:

) .
I "t =0
(o]

Indeed, the 0, 22, 0 state is observed to lie at almost exactly its unper-
turbed value. However, the energy of the 0, 20, 0 state is depressed to

1284 cm-! while the 1, 00, 0 state is elevated to 1388 cm-! by Fermi resonance
between the two states. These are nearly symmetrically placed about the
unperturbed value as predicted by theory. A perturbation matrix element

Uy, = 52 cm™! is required to explain these results.

Some higher vibrational levels of CO, will also be in Fermi resonance
with one another, for example, the O, 31,70 and 1, 11, 0 levels. The next set
of levels with close-lying energy and the same symmetry are the 0, 4%, 0;

1, 20, 0; and 2, 00, 0 levels. In this case, three lovels are involved and
the perturbation treatment would need to be expanded to include three levels.

The linear triatomic molecule C3 is considered next because it is a good
example of the principles discussed above; in addition, it exhibits some
abnormally large deviations from the usual normal-mode approximation and
affords a chance to introduce some of the techniques useful in analyzing such
deviations.

6.11 LARGE-AMPLITUDE BENDING OF Cj

The bending motions of most triatomic molecules can be adequately treated
as small-amplitude, normal-mode displacements with higher-order corrections
provided by small-perturbation treatment. The linear triatomic C3; molecule,
which appears in the ablation of graphite heat shields and in gaseous products
of hydrocarbon combustion, is an interesting exception. This linear molecule
has a very low bending frequency (refs. 3-5), about 63 cm™!, and maximum total
bending angles are large (ref. 6), the order of 60°. With such large-
amplitude bending, one naturally expects deviations from normal mode models.
Gausset et al (ref. 4) and Merer (ref. 7) observe a decrease in the moment of
inertia as the bending quantum number increases, which indicates that the end
atoms are pulled inward as the bending angle increases and that the Hamiltonian
should include terms for the curvilinear motions of the atomic nuclei. Since
C3 stretch vibrations have respectably large frequencies (ref. 8) that indi-
cate a stiff bond (1225 cm™! for symmetric stretch and 2030 cm~! for asym-
metric stretch), these vibrations can be treated to a reasonable approximation
as completely decoupled modes. This permits us to concentrate on a ~imple
model for the Hamiltonian that isolates the efi'ects of large-amplitude bending
on the rotational constant and on the bending energy levels so that these
effects can be readily visualized.
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Figure 6.5 shows the geometry of the

bending molecule., The parameter §

accounts for the curvilinear motion of the @ T
end atoms by defining point A a constant { , A 2r
distance d from the end atoms, where d 18 L e R |

4 4
is the interatomic spacing at zero bending. T——(:) c =
If & = 0, the end atoms move rectilinearly

along normal mode coordinates; if 6=1/3, P— 2 —

the end atoms move along circular arcs a
fixed distance d from the center of mass;
if & = 1, the atoms move along arcs a
fixed distance d from the central atom.
Generally, a variable & is required to
fit the observed variation in the moment of

inertia of the molecule exactly, but a con- dvring bending).

stant value is found to reproduce the observed moment of inertia for Cj
within 1 percent, which is considered sufficient for present purposes.

Figure 6.5.- Coordinatas for
linear triatomic molecule
Y-Y-Y (C, center of mass; 4,
locus of points a fixed dis-
tance 4 from the end atoms

The cylindrical coo.dinates of the central atom (fig. 6.5) are 2r, 0, and
¢; the coordinates of the end atoms are r, +z, and ¢ + n. The axial dis-

placement 3 is
z = (d% - 952p2)1/2
and the 2 component of velocity can be expressed as
22 = 3zg(r)r?

where the function g(r) is defined as

(1") = ——-—-———276“1’2 { + r -@)2
g 42 - 962p2 \ S or

Accordingly, the kinetic energy can b. expr.-sed as
T = 3m[r2(1 + g) + r?¢’]

where m 1is the mass of a single atom. The momenta conjugate to the
coordinates are

aT . .
przﬁ-6ﬂﬂ’(l*0/
3T s

p¢=;&:= omr< ¢

(6.89)

(6.90)

(6.91)

(6.92)

r and ¢

(6.93a)

(6.93b)

The Hamiltonian is the sum of the potential and kinetic eneryies when
these are expressec in terms of coordinates and their conjugate Tom~rtd:
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2 2
H= Pr + B¢
. . 2u(l + g)  2ur?

. V) o ;(6.94)

-~ The reduced mass u equals 6m in the present coordinate system. Note the g

is a positive quantity, equation (6.91), and the effect of bending is to
‘ increase the effective reduced mass to u(l + g) so far ds the radial coordi-

.+ nate motion is concerned. Accordingly, the energy eigenvalues are expected to

. be less than the s1mp1e harmonic oscillator eigenvalues.

The potentis . wight be expressed in terms of arc distance or the =
coordins.e, but these are expressible as functions of r alone by means of
the paramcter 6. The potential is accordingl considered as the sum of a
zeroth-cider term VO(») and a perturbation V!(r), so the Hamiltonian may be

expressed as
2 2 2 ,
pr pl pr 1 v .
H=(T“_+2ur2+ )+ (f-zr*}’ (6.95)

where the function f is the negative quantity .

f= —9—9 ' (6.96)

‘The Hermitian operator for the first bracket in equation (6.95) is the
usual zeroth-order Hamiltonian operator in cylindrical coordinates,

2 2 2
- B (22,19 [ 1 3% ‘
B e (8r2 t ot 22 392 + V0 (6.97)

while the Hermitian operator for the second bracket, as shown in appendix 6-A,

is
f o= - " [ 2 (f ag) ]+v1 (6.98)

The potential VO%(r) is chosen so that eigenfunctions ¢° and their
corresponding e1genva1ues E% can be found for the steady-state Schroedinger
equation A0 = EOy0. The angular dependence of v0 can be disposed of with
the usual separation of variables:

etild
V2r

by = Ry () (6.99)

where v is a total bending vibration quantum number, I is the angular
momentum quantum number of bending motion, and Ry7 is the normalized
solution to
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d?R dr.
vZ 1% 2 0 I(l+1
- - 5 [Evz v - _(';E_'l] Ryy = 0 (6.100)

The